Издревле людям свойственно желание парить в небесах, покорив воздушные просторы. Однако воздухоплаванье и авиация кардинально отличные понятия, принадлежащие одной стихии. Так как воздухоплаванье подразумевает использование летательных аппаратов, которые легче воздуха, авиастроение в авиации занимает ключевую позицию. Авиастроение в нашей стране прошло долгий и тернистый путь и продолжает развиваться эквивалентно техническому прогрессу. В середине 20-х 30-х годов прошлого века развитие двигателей происходило быстрыми темпами и двигатели от бензиновых рядных с водяным охлаждением стремительно переразвились в радиальные (звездообразные) двигатели с воздушным охлаждением. Сему способствовал тот факт, что транспорту отвели главенствующую роль не только в оборонном комплексе страны, но и роль одной из крупнейших отраслей хозяйства, стать частью производственно-социальной инфраструктуры. Для поддержания единства экономического пространства и территориальной целостности необходима была транспортная коммуникация, которая в свою очередь нуждалась серьёзном старте, коим и стал век создания, развития и модернизации винтомоторных двигателей. Дальнейшее развитие конструкций авиационных двигателей переместило вектор активного развития на более лёгкие и мощные реактивные и ракетные двигателя, однако винтомоторные двигатели всё же находят широкое применение в разного рода планеризме, судах для прибрежного и речного плаванья, нетрадиционных видах транспорта.
1. История авиационных двигателей
История двигателей неразрывно связана с историей авиации. Прогресс в авиации на всём протяжении её существования обеспечивался, главным образом, прогрессом авиационных двигателей, а всё возраставшие требования, предъявляемые авиацией к двигателям, являлись мощным стимулятором развития авиационного двигателестроения. Первый самолёт, самостоятельно оторвавшийся от Земли («Флайер-1» конструкции братьев Райт США 1903 г.), был оснащён поршневым двигателем внутреннего сгорания, и на протяжении сорока лет этот тип двигателя оставался основным в самолётостроении. Но к концу Второй мировой войны требование повышения мощности поршневых двигателей вошло в неразрешимое противоречие с другими требованиями, предъявляемыми к авиамоторам — компактностью и ограничением массы. Дальнейшее развитие авиации по пути совершенствования поршневого двигателя становилось невозможным, и реальной альтернативой ему явился воздушно-реактивный двигатель, различные варианты которого предлагались ещё в XVIII и XIX вв. Первый патент на газотурбинный двигатель был выдан англичанину Джону Барберу в 1791 году. Первые проекты самолётов с воздушно-реактивным двигателем были созданы в 60-е годы XIX века П. Маффиотти (Испания), Ш. де Луврье (Франция) и Н.А. Телешовым (Россия).
Перспективы развития системы управления авиационными подразделениями
... органом в области использования воздушного пространства. Государственное регулирование использования воздушного пространства осуществляют следующие органы: уполномоченный орган в области обороны - полное государственное регулирование использования воздушного пространства; - уполномоченный орган в области гражданской авиации - государственное регулирование деятельности по использованию той части ...
В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель.
Первый турбореактивный самолёт Heinkel He 178.
Первым самолётом, поднявшимся в небо с турбореактивным двигателем (ТРД) HeS 3 конструкции фон Охайна, был He 178 (фирма Хейнкель Германия), управляемый лётчиком-испытателем флюг-капитаном Эрихом Варзицем (27 августа 1939 года).
Этот самолёт превосходил по скорости (700 км/ч) все поршневые истребители своего времени, максимальная скорость которых не превышала 650 км/ч, но при этом был менее экономичен, и вследствие этого имел меньший радиус действия. К тому же у него были бомльшие скорости взлёта и посадки, чем у поршневых самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием. Впервые в СССР проект реального истребителя с ВРД разработанным А.М. Люлькой, в марте 1943 года предложил начальник ОКБ-301 М.И. Гудков. Самолёт назывался Гу-ВРД. Проект был отвергнут экспертами, главным образом, в связи с неверием в актуальность и преимущества ВРД в сравнении с поршневыми авиадвигателями.
С августа 1944 года в Германии началось серийное производство реактивного истребителя-бомбардировщика Мессершмитт Me.262, оборудованного двумя турбореактивными двигателями Jumo-004 производства фирмы Юнкерс. А с ноября 1944 года начал выпускаться ещё и первый реактивный бомбардировщик Arado Ar 234 Blitz с теми же двигателями. Единственным реактивным самолётом союзников по антигитлеровской коалиции, формально принимавшим участие во Второй мировой войне, был «Глостер Метеор» (Великобритания) с ТРД Rolls-Royce Derwent 8 конструкции Ф. Уиттла (серийное производство которого началось даже раньше, чем немецких).
В послевоенные годы реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука, и создание самолётов с грузоподъёмностью, многократно превышающей грузоподъёмность поршневых самолётов. Первым отечественным серийным реактивным самолётом был истребитель Як-15 (1946 г.), разработанный в рекордные сроки на базе планера Як-3и адаптации трофейного двигателя Jumo-004, выполненной в моторостроительном КБ В.Я. Климова под обозначением РД-10. А уже через год прошёл государственные испытания первый, полностью оригинальный, отечественный турбореактивный двигатель ТР-1, разработанный в КБ А.М. Люльки (ныне НПО «Сатурн»).
Первым отечественным реактивным пассажирским авиалайнером был Ту-104 (1955 г.), оборудованный двумя турбореактивными двигателями РД-3М-500 (АМ-3М-500), разработанными в КБ А.А. Микулина. Запатентованный ещё в 1913 г., прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на сверхзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф.А. Цандер, Б.С. Стечкин, Ю.А. Победоносцев).
Общие характеристики гражданских самолетов и вертолетов
... финансировать разработки, но через три года самолёт братьев Райт взлетел, что дало дорогу авиационным разработкам. Гиперзвуковой самолет X-43A является самым быстрым самолётом в мире. Аппарат X ...
Leduc 010 первый аппарат, летавший с ПВРД (Музей в Ле Бурже).
Первый полёт — 19. 11.1946
В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевым ПВРД. Далее в течение десяти лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые, а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным. Обладая рядом недостатков для использования на пилотируемых самолётах (нулевая тяга на месте, низкая эффективность на малых скоростях полёта), ПВРД является предпочтительным типом ВРД для беспилотных одноразовых снарядов и крылатых ракет, благодаря своей простоте, а, следовательно, дешевизне и надёжности. Начиная с 50-х годов XX века в США было создан ряд экспериментальных самолётов и серийных крылатых ракет разного назначения с этим типом двигателя.
Крылатая ракета «Буря» с ускорителями.
В СССР с 1954 по 1960 гг. в ОКБ-301 под руководством С.А. Лавочкина, разрабатывалась крылатая ракета «Буря», предназначавшаяся для доставки ядерных зарядов на межконтинентальные расстояния, и использовавшая в качестве маршевого двигателя ПВРД. В 1957 году на вооружение уже поступила МБР Р-7, имевшая то же назначение, разработанная под руководствомС. П. Королёва. Это ставило под сомнение целесообразность дальнейшей разработки «Бури». Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД: П-800 Оникс, П-270 Москит.
Самолёт-снаряд с ПуВРД Фау-1. (Музейный экспонат. Надпись на фюзеляже: «Руками не трогать»)
Пульсирующий воздушно-реактивный двигатель (ПуВРД) был изобретён в XIX веке шведским изобретателем Мартином Вибергом.
Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкийсамолёт-снаряд Фау-1. После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), кроме того, благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть).
2. Классификация авиационных двигателей
К авиационным двигателям относятся все типы тепловых машин, используемых как движители для летательных аппаратов авиационного типа, т.е. аппаратов, использующих аэродинамическое качество для перемещения, маневра и т.п. в пределах атмосферы (самолеты, вертолеты, крылатые ракеты классов «В-В», «В-3», «3-В», «3-3», авиакосмические системы и др.).
Отсюда вытекает большое разнообразие применяемых двигателей — от поршневых до ракетных. Авиационные двигатели делятся на три обширных класса: поршневые (ПД); воздушно-реактивные (ВРД включая ГТД); ракетные (РД или РкД).
Более детальной классификации подлежат два последних класса, в особенности класс ВРД. По принципу сжатия воздуха ВРД делятся на: компрессорные, т.е. включающие компрессор для механического сжатия воздуха; бескомпрессорные: прямоточные ВРД (СПВРД) со сжатием воздуха только от скоростного напора; пульсирующие ВРД (ПуВРД) с дополнительным сжатием воздуха в специальных газодинамических устройствах периодического действия. Класс ракетных двигателей ЖРД также относится к компрессорному типу тепловых машин, так как в этих двигателях сжатие рабочего тела (топлива) осуществляется в жидком состоянии в турбонасосных агрегатах. Ракетный двигатель твердого топлива (РДТТ) не имеет специального устройства для сжатия рабочего тела. Оно осуществляется при начале горения топлива в полузамкнутом пространстве камеры сгорания, где располагается заряд топлива. По принципу действия существует такое деление: ПД и ПуВРД работают по циклу периодического действия, тогда как в ВРД, ГТД иРкД осуществляется цикл непрерывного действия. Это дает им преимущества по относительным показателям мощности, тяги, массе и др., что и определило, в частности, целесообразность их использования в авиации.
Судовые двигатели внутреннего сгорания (2)
... шумностью в работе. По способу воздухоснабжения цилиндров. В зависимости от способа заполнения цилиндров воздухом без повышения давления или под давлением выше атмосферного различают соответственно двигатели без наддува ... том, чтобы усвоить классификации двигателей внутреннего сгорания, а также приобрести навыки в анализе его работы и устройства. Исходя из цели курсового проекта, сформируем задачи: ...
По принципу создания реактивной тяги ВРД делятся на:
- § двигатели прямой реакции;
- § двигатели непрямой реакции.
Двигатели первого типа создают тяговое усилие (тягу Р) непосредственно — это все ракетные двигатели (РкД), турбореактивныебез форсажа и с форсажными камерами (ТРД и ТРДФ), турбореактивные двухконтурные (ТРДД и ТРДДФ), прямоточныесверхзвуковые и гиперзвуковые (СПВРД и ГПВРД), пульсирующие (ПуВРД) и многочисленные комбинированные двигатели. Газотурбинные двигатели непрямой реакции (ГТД) передают вырабатываемую ими мощность специальному движителю (винту, винтовентилятору, несущему винту вертолета и т.п.), который и создает тяговое усилие, используя тот же воздушно-реактивный принцип (турбовинтовые, турбовинтовентиляторные, турбовальные двигатели — ТВД, ТВВД, ТВГТД).
В этом смысле классВРД объединяет все двигатели, создающие тягу по воздушно-реактивному принципу. На основе рассмотренных типов двигателей простых схем рассматривается ряд комбинированных двигателей, соединяющих особенности и преимущества двигателей различных типов, например, классы: турбопрямоточных двигателей — ТРДП (ТРД или ТРДД + СПВРД); ракетно-прямоточных — РПД (ЖРД или РДТТ + СПВРД или ГПВРД); ракетно-турбинных — РТД (ТРД + ЖРД); и многие другие комбинации двигателей более сложных схем.
Поршневой двигатель.
Рядные двигатели в свою очередь подразделяются на однорядные, двухрядные V-образные, трехрядные W-образные, четырехрядные Н-образные или Х-образные двигатели. Звездообразные двигатели также подразделяются на однорядные, двухрядные и многорядные. 1) По характеру изменения мощности в зависимости от изменения высоты — на высотные, т.е. двигатели, сохраняющие мощность с подъемом самолета на высоту, и невысотные двигатели, мощность которых падает с увеличением высоты полета. 2) По способу привода воздушного винта — на двигатели с прямой передачей на винт и редукторные двигатели. Современные авиационные поршневые двигатели представляют собой звездообразные четырехтактные двигатели, работающие на бензине. Охлаждение цилиндров поршневых двигателей выполняется, как правило, воздушным. Ранее в авиации находили применение поршневые двигатели и с водяным охлаждением цилиндров. Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, при этом тепловая энергия преобразуется в механическую, так как под действием давления образующихся газов происходит поступательное движение поршня. Поступательное движение поршня в свою очередь преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом.
Конструкция и работа системы питания бензинового двигателя
... быстро движущийся поток воздуха во впускном трубопроводе под давлением из форсунок впрыскивается мелкораспыленное топливо. Топливо перемешивается с воздухом, и образованная горючая смесь поступает в цилиндры двигателя. Система питания с приготовлением ...
Газотурбинный двигатель
Одновальные и многовальные двигатели. Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя. Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля, мощные электрогенераторы и т.д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным. Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.
Турбореактивный двигатель.
Во входном устройстве осуществляется рост статического давления воздуха за счёт торможения воздушного потока. В компрессоре осуществляется рост полного давления воздуха за счёт совершаемой компрессором механической работы. Степень повышения давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД этот показатель составлял 3, то у современных он достигает 40. Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными. Каждый из каскадов работает со своей скоростью вращения и приводится в движение своей турбиной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последней (самой низкооборотной) турбиной, проходит внутри полого вала компрессора второго каскада (высокого давления).
Каскады двигателя так же именуют роторами низкого и высокого давления. Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока: 1) Первичный воздух — поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической. 2) Вторичный воздух — поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения. 3) Третичный воздух — поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной. Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т.п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы. Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле, который истекает из него, создавая реактивную тягу. Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя используют жаропрочные сплавы, оснащенные системами охлаждения, и термобарьерные покрытия.
Воздушно-реактивный двигатель (2)
Воздушно-реактивные двигатели используются, как правило, для приведения в движение воздушных летательных аппаратов. принцип работа воздух реактивный двигатель 1. История История ВРД неразрывно связана с историей авиации. Прогресс ... конструкции братьев Райт США 1903 год), был оснащён поршневым двигателем внутреннего сгорания, и это техническое решение на протяжении сорока лет оставалось непременным ...
Двухконтурный турбореактивный двигатель.
Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше, с той разницей, что последние ступени турбины в ТРДД являются приводом вентилятора. Одним из важнейших параметров ТРДД, является степень двухконтурности (m), то есть отношение расхода воздуха через внешний контур к расходу воздуха через внутренний контур.
m = G 2 / G1 ,
где G 1 и G2 расход воздуха через внутренний и внешний контуры соответственно.) При степени двухконтурности меньше 4 (m<4) потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 — потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно. В ТРДД заложен принцип повышения полетного КПД двигателя, за счёт уменьшения разницы между скоростью истечения рабочего тела из сопла и скоростью полета. Уменьшение тяги, которое вызовет уменьшение этой разницы между скоростями, компенсируется за счёт увеличения расхода воздуха через двигатель. Следствием увеличения расхода воздуха через двигатель является увеличение площади фронтального сечения входного устройства двигателя, следствием чего является увеличение диаметра входа в двигатель, что ведет к увеличению его лобового сопротивления и массы. Иными словами, чем выше степень двухконтурности — тем большего диаметра будет двигатель при прочих равных условиях. Все ТРДД можно разбить на 2 группы: 1) со смешением потоков за турбиной; 2) без смешения. В ТРДД со смешением потоков (ТРДДсм) потоки воздуха из внешнего и внутреннего контура попадают в единую камеру смешения. В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. ТРДДсм более эффективны, однако наличие камеры смешения приводит к увеличению габаритов и массы двигателя ТРДД как и ТРД могут быть снабжены регулируемыми соплами и форсажными камерами. Как правило это ТРДДсм с малыми степенями двухконтурности для сверхзвуковых военных самолетов.
Газотурбинный двигатель
... снижаются. Проходя через компрессор, воздух сжимается, его давление повышается в 10—45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и ... пассажирских и транспортных самолётов. 4.2. Турбовентиляторный двигатель Турбовентиляторный реактивный двигатель (ТВРД) — это ТРДД со степенью двухконтурности m=2—10. Здесь компрессор низкого давления преобразуется ...
Двухконтурный турбореактивный двигатель с форсажной камерой., ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель.
Внешний контур таких ТРДД, как правило, представляет собой одноступенчатый вентилятор большого диаметра, за которым располагается спрямляющий аппарат из неподвижных лопаток, которые разгоняют поток воздуха за вентилятором и поворачивают его, приводя к осевому направлению, заканчивается внешний контур соплом. По причине того, что вентилятор таких двигателей, как правило, имеет большой диаметр, и степень повышения давления воздуха в вентиляторе не высока — сопло внешнего контура таких двигателей достаточно короткое. Расстояние от входа в двигатель до среза сопла внешнего контура может быть значительно меньше расстояния от входа в двигатель до среза сопла внутреннего контура. По этой причине достаточно часто сопло внешнего контура ошибочно принимают за обтекатель вентилятора. ТРДД с высокой степенью двухконтурности имеют двух- или трёхвальную конструкцию.
Турбовинтовой двигатель., Турбовальный двигатель., Заключение
В данной работе были рассмотрена история авиационных двигателей, их классификация, а так же рассмотрены отдельно взятые двигатели и их свойства, функции и отличия. По представленным данным, мы видим, как развивались авиационные двигатели, а соответственно это позволило построить новую, усовершенствованную авиатехнику и добиться наилучших результатов в использовании авиации как транспортного средства, так и грузового, военного и разведывательного. С мощными двигателями люди обрели свободу над временем, силами, расстоянием и собственными возможностями. Теперь уже не люди завидуют полету птиц, а птицы завидуют людям, которые за короткие сроки могут облететь всю Землю и не только ее…
Список литературы
[Электронный ресурс]//URL: https://drprom.ru/referat/aviatsionnyie-dvigateli/
турбореактивный двигатель авиационный самолет
1. Александров В.Г. Справочник авиационного инженера. Под общ. ред. В.Г. Александрова. — М.: Транспорт, 1973. — 400 с.
2. Бакулев В.И., Голубев В.А. и др. Теория, расчет и проектирование авиационных двигателей и энергетических установок Издание 3-е. — М.: МАИ-САТУРН, 2003. — 688 с.
3. Гарькавый А.А., Чайковский А.В., Ловинский С.И. Двигатели летательных аппаратов — М.: Машиностроение, 1987 — 288 с.
4. Иноземцев А.А., Нихамкин М.А. и др. Основы конструирования авиационных двигателей и энергетических установок. Том 1 Общие сведения. Основные параметры и требования. Конструктивные и силовые схемы. — М.: Машиностроение, 2008 — 207 с.
5. Кравчик Н.И., Кравчик Т.Н. Развитие воздушных летательных аппаратов и авиационных двигателей — М.: МАИ, 2002. — 100 с.
6. Скубачевский Г.С., Хронин Д.В. Винтомоторные установки самолетов — М.: Оборонгиз, Главная редакция авиационной литературы, 1947 — 235 с.
7. Пономарев Б.А. Настоящее и будущее авиационных двигателей — М.: Воениздат, 1982 — 240
8. «Теория поршневых авиационных двигателей», В.С. Рыбальчик, С.В. Поляков, В.Ф. Герасименко / М.: Воениздат, 1955 г.