Термическая и химико-термическая обработка сплавов

Человек использует термическую обработку металлов с древнейших времён. Ещё в эпоху энеолита, применяя холодную ковку самородных золота и меди, первобытный человек столкнулся с явлением наклёпа, которое затрудняло изготовление изделий с тонкими лезвиями и острыми наконечниками, и для восстановления пластичности кузнец должен был нагревать холоднокованую медь в очаге. Наиболее ранние свидетельства о применении смягчающего отжига наклёпанного металла относятся к концу 5-го тысячелетия до н. э. Такой отжиг по времени появления был первой операцией термической обработки металлов. При изготовлении оружия и орудий труда из железа, полученного с использованием сыродутного процесса, кузнец нагревал железную заготовку для горячей ковки в древесноугольном горне. При этом железо науглероживалось, то есть происходила цементация — одна из разновидностей химико-термической обработки. Охлаждая кованое изделие из науглероженного железа в воде, кузнец обнаружил резкое повышение его твёрдости и улучшение других свойств. Закалка в воде науглероженного железа применялась с конца 2 — начала 1-го тысячелетия до н. э. В «Одиссее» Гомера (8—7 вв. до н. э.) есть такие строки: «Как погружает кузнец раскалённый топор иль секиру в воду холодную, и зашипит с клокотаньем железо — крепче железо бывает, в огне и воде закаляясь». В 5 в. до н. э. этруски закаливали в воде зеркала из высокооловянной бронзы (скорее всего для улучшения блеска при полировке).

Цементацию железа в древесном угле или органическом веществе, закалку и отпуск стали широко применяли в средние века в производстве ножей, мечей, напильников и др. инструментов. Не зная сущности внутренних превращений в металле, средневековые мастера часто приписывали получение высоких свойств при термической обработке металлов проявлению сверхъестественных сил. До середины 19 в. знания человека о термической обработке металлов представляли собой совокупность рецептов, выработанных на основе многовекового опыта. Потребности развития техники, и в первую очередь развития сталепушечного производства обусловили превращение термической обработки металлов из искусства в науку. В середине 19 в., когда армия стремилась заменить бронзовые и чугунные пушки более мощными стальными, чрезвычайно острой была проблема изготовления орудийных стволов высокой и гарантированной прочности. Несмотря на то что металлурги знали рецепты выплавки и литья стали, орудийные стволы очень часто разрывались без видимых причин. Д. К. Чернов на Обуховском сталелитейном заводе в Петербурге, изучая под микроскопом протравленные шлифы, приготовленные из дул орудий, и наблюдая под лупой строение изломов в месте разрыва, сделал вывод, что сталь тем прочнее, чем мельче её структура. В 1868 Чернов открыл внутренние структурные превращения в охлаждающейся стали, происходящие при определённых температурах. которые он назвал критическими точками а и b. Если сталь нагревать до температур ниже точки а, то её невозможно закалить, а для получения мелкозернистой структуры сталь следует нагревать до температур выше точки b. Открытие Черновым критических точек структурных превращений в стали позволило научно обоснованно выбирать режим термической обработки для получения необходимых свойств стальных изделий.

27 стр., 13321 слов

По химии Металлы читать бесплатно. Сообщение о металле

... Интересный факт о металле: по состоянию на 2014 год во всем мире было добыто примерно 179 тонн золота, около половины которого приходится на Южно-Африканскую Республику. Почти такое же количества железа ... Интересный факт о металле: в глубокой древности, когда человечество еще не было знакомо с технологиями производства стали, ... Норвежские кузнецы, которые ... Тем не менее данное утверждение произрастает на ...

В 1906 А. Вильм (Германия) на изобретённом им дуралюмине открыл старение после закалки — важнейший способ упрочения сплавов на разной основе (алюминиевых, медных, никелевых, железных и др.).

В 30-е гг. 20 в. появилась термомеханическая обработка стареющих медных сплавов, а в 50- — термомеханическая обработка сталей, позволившая значительно повысить прочность изделий. К комбинированным видам термической обработки относится термомагнитная обработка, позволяющая в результате охлаждения изделий в магнитном поле улучшать их некоторые магнитные свойства.

2.ТЕРМИЧЕСКАЯ ОБРАБОТКА СПЛАВОВ

Итогом многочисленных исследований изменений структуры и свойств металлов и сплавов при тепловом воздействии явилась стройная теория термической обработки металлов.

Под термической обработкой понимают изменение структуры, а следовательно, и свойств стали при нагреве до заданной температуры, выдержке при этой температуре и охлаждении с заданной скоростью.

Классификация видов термической обработки основывается на том, какого типа структурные изменения в металле происходят при тепловом воздействии.

Термическая обработка металлов подразделяется на:

  • собственно термическую, заключающуюся только в тепловом воздействии на металл,
  • химико-термическую, сочетающую тепловое и химическое воздействия,
  • термомеханическую, сочетающую тепловое воздействие и пластическую деформацию.

    2.1.

ОСНОВНЫЕ ВИДЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ

Собственно термическая обработка включает следующие виды:

  • отжиг 1-го рода,
  • отжиг 2-го рода,
  • закалку без полиморфного превращения и с полиморфным превращением
  • старение
  • отпуск.

Термической обработкой называют процессы теплового воздействия на сплавы (нагрев и охлаждение) с целью изменения их структуры и свойств. Это один из самых распространённых в технике и самых эффективных способов изменения структуры и свойств сталей и сплавов, обусловленных протеканием различных фазовых превращений.

Термическая обработка может быть как промежуточной операцией, предназначенной для улучшения технологических свойств (облегчения ковки, штамповки, прокатки), так и окончательной – для обеспечения в материале или изделиях требуемого комплекса свойств

Так как основными факторами любого вида термической обработки являются температура и время, то любой процесс термической обработки можно описать графиком, показывающим изменение температуры во времени.

При рассмотрении разных видов термообработки железо-углеродистых сплавов (стали, чугуны) используются следующие условные обозначения критических точек этих сплавов (рис. 1.1).

4 стр., 1690 слов

Термическая обработка металлов и сплавов

... изменения структуры, фазового состава, механических и физических свойств материала, без изменения химического состава. Назначение термической обработки металлов – получение требуемой твердости, улучшение прочностных характеристик металлов и сплавов. Термическая обработка подразделяется на термическую, термомеханическую и химико-термическую. Термическая обработка – только термическое ...

  1

Рис. 1.1 . Обозначение критических точек стали

Критические точки А 1 лежат на линии PSK (727 °C).

Критические точки А2 находятся на линии МО (768 °C).

Критические точки А3 лежат на линии GS, а критические точки Аcm — на линии SE.

Вследствие теплового гистерезиса превращения при нагреве и охлаждении проходят при разных температурах. Поэтому для обозначения критических точек при нагреве и охлаждении используют дополнительные индексы: буквы «с» в случае нагрева и «r» в случае охлаждения. Например, А С1 , АС3 , Аr1 , Аr3 .

Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.

Основы термической обработки разработал Чернов Д.К.. В дальнейшем они развивались в работах Бочвара А.А., Курдюмова Г.В., Гуляева А.П.

  2

Рис.2.1. Графики различных видов термообработки: отжига (1, 1а), закалки (2, 2а), отпуска (3), нормализации (4)

Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств (представляется в виде графика в осях температура – время, см. рис. 12.1 ).

Рассмотрим следующие виды термической обработки:

Отжиг 1 рода

  • возможен для любых металлов и сплавов.

Его проведение не обусловлено фазовыми превращениями в твердом состоянии.

Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения.

Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение

Разновидностями отжига первого рода являются:

  • диффузионный;
  • рекристаллизационный;
  • отжиг для снятия напряжения после ковки, сварки, литья.

Отжиг II рода

  • отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.

Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.

Проводят отжиг второго рода с целью получения более равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием.

Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью (рис. 12.1 (1, 1а)).

2.4 Закалка

  • проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит).

Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения (рис. 12.1 (2, 2а)).

2.5 Отпуск

  • проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей.

Характеризуется нагревом до температуры ниже критической А (рис. 2.1 (3)).

Скорость охлаждения роли не играет. Происходят превращения, уменьшающие степень неравновесности структуры закаленной стали.

предварительную

Предварительная, Окончательная

Любая разновидность термической обработки состоит из комбинации четырех основных превращений, в основе которых лежат стремления системы к минимуму свободной энергии.

Предварительная 1

Зависимость свободной энергии структурных составляющих сталей от температуры: аустенита (F A ), мартенсита (FM ), перлита (FП )

1. Превращение перлита в аустенит Предварительная 2 , происходит при нагреве выше критической температуры А1, минимальной свободной энергией обладает аустенит.

Предварительная 3

2. Превращение аустенита в перлитПредварительная 4 , происходит при охлаждении ниже А1 , минимальной свободной энергией обладает перлит:

Предварительная 5

3. Превращение аустенита в мартенситПредварительная 6 , происходит при быстром охлаждении ниже температуры нестабильного равновесия

Предварительная 7

4. Превращение мартенсита в перлит Предварительная 8 ; – происходит при любых температурах, т.к. свободная энергия мартенсита больше, чем свободная энергия перлита.

Предварительная 9

3.ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА СПЛАВОВ

Химико-термической обработкой (ХТО) называется термическая обработка, заключающаяся в сочетании термического и химического воздействия с целью изменения состава, структуры и свойств поверхностного слоя стали, такие как: цементация, азотирование, нитроцементация, цианирование, борирование, силицирование, диффузионная металлизация стали и др.

Химико-термическая обработка является одним из наиболее распространенных видов обработки материалов с целью придания им эксплуатационных свойств. Наиболее широко используются методы насыщения поверхностного слоя стали углеродом и азотом как порознь, так и совместно. Это процессы цементации (науглероживания) поверхности, азотирования — насыщения поверхности стали азотом, нитроцементации и цианирования — совместного введения в поверхностные слои стали углерода и азота. Насыщение поверхностных слоев стали иными элементами (хромом — диффузионное хромирование, бором — борирование, кремнием — силицирование и алюминием — алитирование) применяются значительно реже.

Процесс химико-термической обработки представляет собой многоступенчатый процесс, который включает в себя три последовательные стадии:

1. Образование активных атомов в насыщающей среде вблизи поверхности или непосредственно на поверхности металла. Мощность диффузионного потока, т. е. количество образующихся в единицу времени активных атомов, зависит от состава и агрегатного состояния насыщающей среды, которая может быть твердой, жидкой или газообразной, взаимодействия отдельных составляющих между собой, температуры, давления и химического состава стали.

2. Адсорбция (сорбция) образовавшихся активных атомов поверхностью насыщения. Адсорбция является сложным процессом, который протекает на поверхности насыщения нестационарным образом. Различают физическую (обратимую) адсорбцию и химическую адсорбцию (хемосорбцию).

При химико-термической обработке эти типы адсорбции накладываются друг на друга. Физическая адсорбция приводит к сцеплению адсорбированных атомов насыщающего элемента (адсорбата) с образовываемой поверхностью (адсорбентом) благодаря действию Ван-дер-Ваальсовых сил притяжения, и для нее характерна легкая обратимость процесса адсорбции — десорбция. При хемосорбции происходит взаимодействие между атомами адсорбата и адсорбента, которое по своему характеру и силе близко к химическому.

3. Диффузия — перемещение адсорбированных атомов в решетке обрабатываемого металла. Процесс диффузии возможен только при наличии растворимости диффундирующего элемента в обрабатываемом материале и достаточно высокой температуре, обеспечивающей энергию необходимую для протекания процесса.

Толщина диффузионного слоя, а следовательно и толщина упрочненного слоя поверхности изделия, является наиболее важной характеристикой химико-термической обработки. Толщина слоя определяется рядом таких факторов, как температура насыщения, продолжительность процесса насыщения, состав стали, т. е. содержание в ней тех или иных легирующих элементов, градиент концентраций насыщаемого элемента между поверхностью изделия и в глубине насыщаемого слоя

Толщина слоя

Рис.1

Глубина диффузионного слоя в зависимости от продолжительности процесса и температурыПредварительная 10

Под цементацией принято понимать процесс высокотемпературного насыщения поверхностного слоя стали углеродом. Так как углерод в α-фазе практически нерастворим, то процесс цементации осуществляется в интервале температур 930–950 °С — т. е. выше α → γ-превращения. Структура поверхностного слоя цементованного изделия представляет собой структуру заэвтектоидной стали (перлит и цементит вторичный), поэтому для придания стали окончательных — эксплуатационных — свойств после процесса цементации необходимо выполнить режим термической обработки, состоящий в закалке и низком отпуске; температурно-временные параметры режима термической обработки назначаются в зависимости от химического состава стали, ответственности, назначения и геометрических размеров цементованного изделия. Обычно применяется закалка с температуры цементации непосредственно после завершения процесса химико-термической обработки или после подстуживания до 800–850 °С и повторного нагрева выше точки АС3 центральной (нецементованной) части изделия. После закалки следует отпуск при температурах 160–180 °С.

Цементация как процесс химико-термической обработки, в основном, применяется для низкоуглеродистых сталей типа Ст2, СтЗ, 08, 10, 15, 20, 15Х, 20Х, 20ХНМ, 18ХГТ, 25ХГТ, 25ХГМ, 15ХГНТА, 12ХНЗА, 12Х2Н4А, 18Х2Н4ВА и др., однако в ряде случаев может быть использована при обработке шарикоподшипников — стали ШХ15, 7Х3 и коррозионностойких сталей типа 10Х13, 20Х13 и т. д. Стали, рекомендуемые для цементации, должны обладать хорошей прокаливаемостью и закаливаемостью цементованного слоя, которые должны обеспечить требуемый уровень прочности, износостойкости и твердости. Прокаливаемость сердцевины должна регулироваться в весьма узком диапазоне твердостей, который составляет 30–43 HRCЭ. Учитывая длительность процесса цементации и высокую температуру процесса, рекомендуется при этом виде химико-термической обработки использовать наследственно мелкозернистые стали, размер зерна которых не должен превышать 6–8 баллов. В противном случае в ходе цементации отмечается значительный рост зерна сердцевины изделия, что приводит к снижению его эксплуатационных свойств.

Цементация производится в углероднасыщенных твердых, жидких или газообразных средах, называемых карбюризаторами.

При твердофазной цементации процесс ведут следующим образом. Цементуемые детали упаковываются в цементационные ящики таким образом, чтобы их объем, в зависимости от сложности конструкции детали, занимал от 15 до 30 % объема цементационного ящика. Ящики загружают в печь, нагретую до температур от 600–700 °С и нагревают до температуры цементации — 930–950 °С. По окончании процесса цементации ящики вынимаются из печи — охлаждение деталей ведется внутри цементационных ящиков на воздухе. К числу недостатков цементации в твердых карбюризаторах относятся: невозможность регулирования степени насыщения и невозможность проведения закалки непосредственно после цементации, дополнительный непродуктивный расход энергии на прогрев цементационных ящиков и т. п. Однако простота метода, возможность проводить процесс на стандартном печном оборудовании без установки дополнительных устройств делают этот метод весьма распространенным в условиях мелкосерийного производства в ремонтных цехах и на участках крупных предприятий. Цементация в жидкофазном карбюризаторе применяется для мелких деталей. К недостаткам этого процесса относятся неравномерность глубины цементованного слоя и необходимость частых регенераций углероднасыщенного расплава. В случае серийного и крупносерийного производства цементованных изделий наибольшее распространение получила цементация в газообразных карбюризаторах. Этот метод обеспечивает наибольшую равномерность по толщине и свойствам цементованного слоя, снижает время, затрачиваемое на процесс химико-термической обработки, а в ряде случаев позволяет производить закалку изделий непосредственно после цементации. В последнее время получил распространение процесс вакуумной цементации. Печи для вакуумной цементации состоят из нагревательной камеры, снабженной вентилятором для обеспечения интенсивной циркуляции воздуха, закалочного бака и транспортных устройств. Подготовленные для вакуумной цементации детали помещают в нагревательную печь, вакуумируют и нагревают до 1000–1100 °С, затем в печь подается газообразный карбюризатор — очищенный природный газ, пропан или бутан. Этот метод позволяет ускорить процесс цементации, повысить качество получаемого слоя.

Качество процесса цементации оценивается по эффективной толщине цементованного слоя, которая определяется по одному из двух показателей — твердости или структуре слоя. Структура поверхностного слоя цементованной стали состоит из нескольких зон: поверхностной — заэвтектоидной (перлит + цементит), эвтектоидной — перлитной и доэвтектоидной — перлитоферритной. Эффективную толщину цементованного слоя по структуре принято измерять на металлографических шлифах в отожженном состоянии при увеличениях от 100 до 500 раз.

В случае, когда за критерий оценки толщины цементованного слоя принимается твердость или микротвердость после цементации, то оценка ведется на термически обработанных образцах, а за конец цементованного слоя принимается зона с твердостью 50 HRCЭ или 540–600 Н

Под азотированием подразумевается процесс диффузионного насыщения поверхностного слоя стального изделия или детали азотом при нагреве в соответствующей среде. Целью азотирования являются повышение твердости поверхности изделия, выносливости и износостойкости, стойкости к появлению задиров и кавитационным воздействиям, повышение коррозионной стойкости в водных средах и атмосфере.

Азотированию подвергаются самые разнообразные по составу и назначению стали — конструкционные и инструментальные, жаропрочные и коррозионностойкие, спеченные порошковые стали, а также ряд тугоплавких материалов (табл. 2).

Азотирование проводится при температурах значительно ниже температур цементации и температур фазовых превращений, поэтому иногда этот процесс называют низкотемпературной химико-термической обработкой или низкотемпературным азотированном. Температура процесса азотирования обычно не превышает 600 °С. Однако следует отметить, что в последние годы все большее распространение получает процесс высокотемпературного азотирования (600–1200 °С).

Этот процесс применяют для насыщения азотом поверхностей деталей из ферритных и аустенитных сталей, ряда тугоплавких металлов — титана, молибдена, ниобия, ванадия и т. д.

Таблица 2. Составы основных насыщающих сред и режимы химико-термической обработки при азотировании

Состав насыщающей среды

Режим азотирования

Глубина слоя, (мм)

Т, °С

τ, ч

Азотирование изотермическое

1

Аммиак NH3 давление, Па: 192,4–721,5 степень диссоциации,

20–40 %

500-520

6-90

0,1-0,8

30–55

560–580

1–10

0,15–0,4

2

20 % NH3 + 80 % N2 (или N2 + H2)*1

500–520

6–90

0,1–0,8

Азотирование двухступенчатое

3

20 % NH3 степень диссоциации

20–40 %

500–520

15–20

0,5–0,8

40–45

540–560

25–40

0,5–0,8

Азотирование с добавками углеродсодержащих газов

4

Аммиак NH3 + 50 % эндогаза (40 % H2 + 20 % СО + 40 % N2)*2

570

0,5–3,0

5

Аммиак NH3 + 50 % эндо-экзогаза (20 % H2 + 20 % СО + 60 % N2)

6

Аммиак NH3 + 50 % экзогаз (10 % СО + 90 % N2) в отношении 1 к 2

7

58,6 % N2 + 17,9 % H2 + 14,3 % NH3 + 3,5 % СО + 2,2 % СО2 + 3,5 % Н2О

8

Аммиак NH3 + 50 % С2Н8 (пропана)*3

570

2–10

9

Продукты пиролиза керосина, спирта (50 %) + Аммиак NH3 (50 %)

570

1–6

Азотирование антикоррозийное *4

10

Аммиак NH3 давление, Па: 192,4–721,5, степень диссоциации, %: 40–60

600–700

0,25–10

0,02–0,08

Примечание:

*1 Процесс кратковременного азотирования при 570 °С — вместо жидкого азотирования. Разбавление аммиака азотом уменьшает хрупкость слоя.

*2 Применение эндогаза при температурах ниже 700 °С — взрывоопасно. Требуется принятие специальных защитных мер.

*3 Степень диссоциации аммиака — 30–60 %.

*4 Антикоррозийному азотированию подвергают изделия, изготовленные из углеродистых сталей, работающих в условиях атмосферной коррозии.

Процесс низкотемпературного азотирования проводят, в основном, в газовых средах — смеси азота и аммиака, диссоциированного аммиака и т. д. Для активизации процесса в насыщающую среду могут быть введены кислород или воздух. Достаточно широкое применение нашли среды, где азот-насыщенные среды дополняются углероднасыщенными, — то есть среды, где кроме диссоциированного аммиака присутствуют природный или светильный газ, эндогаз, пары спирта или керосина и т. п.

Для азотирования в жидких средах, которое также называют «мягким азотированием» или «тенифер-процессом» применяют расплавы цианид-цианатных солей или ванны на основе карбамида. Однако жидкое азотирование не получило широкого распространения из-за токсичности процесса, высокой стоимости используемого оборудования и используется, в основном, для обработки инструментов из быстрорежущих или высоколегированных инструментальных сталей. Подогретые инструменты выдерживают в ванне при 530–560 °С в течение 10–100 мин — в зависимости от типа инструмента, а затем охлаждают на воздухе. Необходимо строго следить за химическим составом насыщающего состава, так как полная азотирующая способность ванны устанавливается только в том случае, когда содержание цианатов составляет около 40 % от начального содержания в расплаве цианидов.

Термическая обработка инструментальных сталей после азотирования производится по следующему режиму: закалка с температур 1000–1050 °С и затем, для повышения ударной вязкости, первый отпуск выполняется при температуре 350 °С, а последующие — при 560 °С.

Нитроцементация или цианирование стали — процессы химико-термической обработки, заключающиеся в высокотемпературном насыщении поверхности изделия азотом и углеродом. Причем процесс совместного насыщения поверхности азотом и углеродом в жидких ваннах принято называть цианированием, а насыщение в газообразных средах — нитроцементацией,

Процесс нитроцементации обычно ведут при температурах 820–860 °С в средах эндогазов и эндоэкзогазов с добавками природного газа (метана) и аммиака. Чем больше толщина требуемого слоя насыщения, тем меньше должно быть содержание аммиака и метана и выше температура химико-термической обработки. Для получения слоя толщиной около 0,2 мм при температуре нитроцементации 800–820 °С в атмосферу печи добавляют 6–15 % аммиака и около 5 % метана. Для получения слоя 0,5–1,0 мм температура нитроцементации повышается до 860–880 °С , а содержание аммиака и метана снижаются соответственно до 0,6–1,3 % и 0,5–0,8 %.

Основное назначение процесса нитроцементации — повышение твердости, контактной выносливости, износостойкости и предела выносливости изделий. Основной температурой процесса считается 860 °С. При оптимальных условиях насыщения структура нитроцементованного слоя состоит из мартенсита, небольшого количества равномерно распределенных частиц карбонитридов и 25–30 % остаточного аустенита, обеспечивающего хорошую прирабатываемость. Содержание углерода на поверхности составляет 0,7–0,9 %, азота — 0,3–0,4 %. Эффективная толщина насыщаемого слоя не должна превышать 1 мм, так как при большей толщине в структуре слоя появляются фазы, резко снижающие предел выносливости и контактную выносливость материала.

Цианирование проводят при температурах от 800 до 950 °С в расплавах, содержащих цианистые соли, причем с повышением температуры химико-термической обработки доля углерода в слое растет, а азота — понижается. Структура насыщенного слоя после цианирования оказывается аналогичной структуре слоя после нитроцементации. Химические составы основных расплавов для цианирования приведены в табл. 3.

Таблица 3. Составы ванн и режимы цианирования изделий

Состав насыщающей среды

Режим цианирования

Глубина слоя, мм

Т,°С

τ, ч

50 % NaCN +50 % NaCl (20–25 % NaCN +

+ 25–30 % NaCl + 25–50% Na2CO3)*

840

0,5

0,15–0,2

840

1,0

0,2–0,25

870

0,5

0,2–0,25

870

1,0

0,25–0,35

10 % NaCN +40 % NaCl + + 50 % BaCl2

(8–12 % NaCN +

+ 30–55 % NaCl + 10 % Na2CO3 + + 15 % BaCl2)

840

1,0–1,5

0,25–0,3

900

1,0

0,5–0,6

900

2,0

0,7–0,8

900

4,0

1,0–1,2

8 % NaCN +10 % NaCl + + 82 % BaCl2 (3–8 % NaCN + 30 % BaCl2 + + 30 % NaCl + 40 % BaCO2)

900

0,5

0,2–0,25

900

1,5

0,5–0,8

950

2,0

1,0–1,1

950

3,0

1,0–1,2

950

5,5

1,4–1,6

* В скобках дан рабочий состав ванн для цианирования.

Цианистый натрий в расплаве солей окисляется кислородом воздуха с протеканием реакций:

2NaCN + О2 ® 2NaCNO, (1)

2NaCNO + О2 ® Na2C3 + CO + 2N, (2)

2CO ® CО2 + С (3)

Полученные в результате реакций (2) атомарный азот и (3) атомарный углерод диффундируют в железо. Следует иметь в виду, что активность ванн в процессе цианирования изделий постепенно снижается. Для поддержания скорости течения процесса следует периодически добавлять в расплав цианистый натрий.

Цианирование применяется для изделий из низкоуглеродистых и низколегированных сталей и используют для повышения их поверхностной твердости, износостойкости, предела выносливости при изгибе и контактной выносливости.

Среди главных достоинств цианирования — относительно небольшая длительность процесса химико-термической обработки, малые деформации и коробления детали в ходе процесса насыщения, малые потери тепла. Главным же недостатком процесса цианирования является высокая токсичность применяемых расплавов и, следовательно, существуют экологические проблемы. Отсюда следует необходимость строительства изолированных помещений, установка в них систем вентиляции и очистки воздуха.

Термическую обработку изделий после цианирования — закалку — проводят непосредственно из ванн, а затем дают низкий отпуск при температурах порядка 180–200 °С. Твердость насыщенного слоя после термической обработки находится в пределах 58–64 HRCЭ.

Основными дефектами процессов насыщения поверхностных слоев изделий углеродом и азотом являются отслаивания; грубозернистый излом и хрупкость; магкая поверхность; крайне малая толщина насыщенной пленки и снижение твердости; повышенная хрупкость.

Отслаивания. Это явление, в основном, присуще насыщению поверхности стали углеродом и связано со слишком низкой температурой цементации, когда содержание углерода по направлению к сердцевине выравнивается очень медленно или при слишком быстром нагреве, когда содержание углерода очень резко снижается по мере удаления от поверхности изделия. Такие резкие переходы, а также очень крупное зерно в наружной зоне вызывают (за счет возникновения напряжений отрыва) отделение цементованного слоя от сердцевины изделия в виде отслаивающейся оболочки.

Грубозернистый излом и хрупкость. Грубозернистость цементованного слоя может быть обусловлена перегревом или передержкой при закалке, а также переизбытком углерода в поверхности изделия из-за слишком высокой или колеблющейся температуры цементации. Эти дефекты могут быть устранены повторной закалкой. Грубозернистость сердцевины может быть обусловлена закалкой с температуры цементации при отсутствии последующего измельчения зерна, слишком низкой температурой закалки, при использовании углеродистых и низколегированных сталей — завышенными размерами деталей, что приводит к недостаточной прокаливаемости сердцевины.

Мягкая поверхность. Мягкие пятна на поверхности цементованных изделий могут быть обусловлены рядом нарушений процесса цементации, например, возникновением пустот (в отсутствии карбюризатора) при набивке деталей в цементационный ящик, а при газовой цементации — возникновением на поверхности детали корки графита. Другими причинами локального снижения твердости цементованного слоя могут быть дефекты закалки, связанные с обезуглероживанием, недостаточной скоростью охлаждения или возникновения паровой рубашки при охлаждении с температуры закалки. Для углеродистых сталей, характеризующихся малой закаливаемостью, такой дефект может быть устранен повышением скорости охлаждения при закалке, например, охлаждением детали в растворах солей.

Сплошная мягкая пленка может образоваться на поверхности высоколегированных сталей при их переуглероживании за счет образования при нагреве под закалку поверхностного слоя аустенита, сохраняющегося до комнатных температур. Для устранения такого дефекта необходимо провести гомогенизацию и понизить температуру закалки изделия.

В случае азотирования изделий мягкая поверхность или мягкие пятна на поверхности могут вызываться азотированием необезжиренных деталей.

Повышенная хрупкость и склонность к выкрашиванию азотированного слоя может быть связана с азотированием обезуглероженной поверхности, которая могла образоваться на детали в процессе горячей обработки давлением, термической обработке. Такой слой должен быть удален с помощью механической обработки. Также следует иметь в виду, что твердость поверхности при азотировании несколько ниже твердости слоя, лежащего непосредственно под поверхностью, поэтому при азотировании высоконагруженных деталей рекомендуется провести удаление поверхностного азотированного слоя шлифовкой и притиркой до сборки конструкции.

Нарушения температурного режима при азотировании также могут привести к возникновению ряда дефектов на насыщенной поверхности изделия. Так, слишком низкая температура процесса дает крайне малую толщину насыщенной пленки, причем такой дефект не выявить обычными методами контроля (проверкой твердости азотированного слоя), однако он крайне негативно отражается на эксплуатационных свойствах изделия. Подобный дефект может быть устранен повторным азотированием при правильной температуре процесса. Завышенные температуры азотирования применимы только для быстрорежущих и нержавеющих сталей, в других случаях они приводят к снижению твердости поверхности, которая уже не может быть восстановлена повторными азотированиями.

Борирование — процесс химико-термической обработки, состоящий в диффузионном насыщении поверхностного слоя стали бором при высокотемпературной выдержке в соответствующих насыщающих средах. Это один из наиболее эффективных и универсальных процессов химико-термической обработки. Борированию могут подвергаться стали перлитного, ферритного и аустенитного классов.

Борирование может осуществляться в твердых, жидких (электролизное и безэлектролизное борирование) и газообразных средах (табл. 4).

При борировании в твердых средах, обрабатываемые детали помещаются в герметически закрываемые контейнеры, называемые боризаторами. Процесс твердофазного борирования, или борирования в порошковых средах, осуществляется в вакууме или водородных средах. Жидкофазное (безэлектролизное) борирование применяют только в случае обработки деталей сложной конфигурации, а электролизное, как более экономичное широко используется для широкого спектра изделий простых форм различного назначения. В качестве анода при электролизном борировании применяют графитовые стержни, напряжение постоянного тока в процессе борирования колеблется в пределах 6–24 В. Наиболее низкотемпературным процессом борирования является химико-термическая обработка деталей в газообразных средах, однако взрывоопасность и токсичность применяемых сред ограничивает возможности этого, безусловно прогрессивного, способа химико-термической обработки.

Борирование применяют для повышения износостойкости поверхностного слоя стального изделия, в частности, при повышенных температурах, повышения его твердости и износостойкости. Изделия, подвергшиеся борированию, обладают повышенной до 800 °С окалиностойкостью и теплостойкостью до 900–950 °С. Твердость борированного слоя в сталях перлитного класса составляет 15 000–20 000 МПа.

Углерод в процессе борирования оттесняется от поверхности стали и в насыщаемой зоне образуется зона сплошных боридов, химический состав форма и структура которых напрямую зависит от химического состава стали. Углерод и легирующие элементы уменьшают глубину насыщаемого слоя, чем выше их содержание, тем меньше глубина борирования.

Таблица 4. Составы сред и режимы борирования сталей

Состав насыщающей среды

Режим борирования

Глубина слоя, мм

Т, °С

τ, ч

Борирование в твердых средах

B4C* + 2–4 % NH4Cl

950–1050

3–6

0,15–0,30

80 % B4C + 16–18 % Al2O3 + 2–4 % NH4Cl

79 % B4C + 16 % Na2B4O7 + 5 % KBF4

Борирование в жидких средах

Электролизное борирование

40 % расплавленная бура – Na2B4O7 + 50 % B2O3 + 10 % NaCl

950

2–3

0,15–0,3

Расплавленная бура – Na2B4O7

900–950

2–4

0,15–0,3

70 % Na2B4O7 + 30 % Na2SO4

600

4–6

0,015–0,025

Безэлектролизное борирование

60 % расплавленная бура – Na2B4O7 + 40 % В4С

100–1050

3–5

0,2–0,35

Около 80 % Na2B4O7 + 15–17 % NaCl + 6–7 % порошка бора

850

2–3

0,04–0,05

900–950

2–4

0,1–0,25

Борирование в газообразных средах

В2Н2, разбавленный водородом в соотношениях от 1 : 25 до 1 : 150

800–850

2–4

0,1–0,2

BCl3 + H2 в соотношении 1:20

750–950

3–6

0,1–0,25

Примечание:

* Карбид бора используется в порошкообразном виде.

Углерод, вытесненный из поверхностного слоя, образует собственную зону повышенной концентрации, которая располагается непосредственно за слоем боридов. По ширине такая зона оказывается значительно шире боридной и ее размеры определяются наличием или отсутствием в стали карбидообразующих элементов. Карбидообразующие элементы, резко снижая скорость диффузии углерода, уменьшают ширину слоя с повышенным содержанием углерода, некарбидообразующие практически не оказывают влияние на ее размеры.

В ряде случаев выполняется многокомпонентное борирование, когда совместно с насыщением бором дополнительно производится насыщение поверхности детали другими элементами — хромом, алюминием, кремнием и т. д. такое насыщение производится для повышения коррозионной стойкости и износостойкости поверхностного слоя детали, однако, полученные результаты повышения стойкости не так велики, чтобы эти процессы нашли широкое распространение.

Силицирование — процесс химико-термической обработки, состоящий в высокотемпературном (950–1100 °С) насыщении поверхности стали кремнием. Силицирование повышает коррозионную стойкость стали в различных агрессивных средах — морской воде, растворах кислот, увеличивает окалиностойкость изделий до 800—1000 °С. В ряде случаев силицирование используется для придания детали антифрикционных свойств. Силицирование может производиться в газообразных и жидких средах как электролизным, так и безэлектролизным методом. Основные составы насыщающих сред и режимы силицирования по данным М. Ю. Лахнина приведены в табл. 5.

Таблица 5. Составы сред и режимы силицирования сталей

Состав насыщающей среды

Режим силицирования

Глубина слоя, мм

Т, °С

τ, ч

Силицирование в газообразных средах

75 % феррокремния + 20 % Al2O3 + 5 % NH4Cl

1100–1200

6–12

0,15–0,8

SiCl4 + H2 или SiCl4 + N2

950

2–3

0,4–0,5

SiH4 + H2 или SiH4 + Ar

950

2–3

0,4–0,6

Силицирование в жидких средах

Электролизное силицирование

Расплав Na2SiO3 или 95% Na2SiO3 + 5% NaF*

1050

0,5–1,0

0,15–0,25

Безэлектролизное силицирование

35% Na2SiO3 + 15% SiC + 28% NaCl + 22% BaCl2

950–1100

2–10

0,1–0,3

Примечание:

* Плотность тока при электролизе от 2,5 до 3,0 кА/м2.

Насыщение поверхности стали металлами в ходе их высокотемпературной химико-термической обработки в соответствующих насыщающих средах называется диффузионной металлизацией. Целью такого вида химико-термической обработки является изменение состава, структуры и свойств поверхностного слоя стали путем введения в него таких металлов, как хром, алюминий, цинк, вольфрам, ванадий, ниобий. Диффузионная металлизация, в зависимости от насыщающего элемента, может проводиться в диапазоне температур от 1400 до 700 °С. Техническое исполнение этого вида химико-термической обработки может быть вы-полнено рядом способов, например, погружением обрабатываемой детали в ванну с расплавленным металлом. Такой метод применим в том случае, когда температура плавления насыщающего металла оказывается значительно ниже температуры плавления стали. В случае необходимости насыщения поверхности стальной детали тугоплавкими металлами возможно использование погружения детали в расплавы солей насыщающего металла, насыщения поверхности детали из газовой фазы, состоящей галогенидов диффундирующего металла, диффузии насыщающего металла путем его испарения из сублимированной фазы, метода циркуляционного газового насыщения и т. п.

Подобная химико-термическая обработка может включать в себя как насыщение только одним элементом, например, насыщение поверхности детали хромом — хромирование, насыщение алюминием — алитирование, так и насыщение группой металлов — хромоалитирование (одновремен-ное насыщение хромом и алюминием), одновременное насыщение поверхности детали металлами и неметаллами — карбохромирование (насыщение поверхности углеродом и хромом).

Совместное насыщение поверхности детали рядом элементов может проводиться как одновременно, так и последовательно.

В результате диффузионной металлизации в поверхности стали возникают слои высоколегированных твердых растворов диффундирующих элементов в железе, создавая принципиально иные физико-химические свойства поверхностных, защитных слоев изделия.

3.5.а Алитирование

Алитированием — называется режим химико-термической обработки, состоящей в насыщении поверхности стали алюминием в соответствующих насыщающих средах. Как правило алитирование производится при температурах 700–1100 °С. Целью алитирования является повышение окалиностойкости изделий (до 800–900 °С), коррозионной стойкости в атмосферных условиях и морской воде.

В основном, алитированию подвергаются малоуглеродистые стали (так как углерод резко снижает глубину алитированного слоя. При алитировании в течение 12 ч при 1100 °С у стали с 0,06 % углерода толщина слоя составляет 1 мм, у стали с 0,38 % углерода — менее 0,9 мм, при температуре 850 °С — 0,17 и 0,14 мм соответственно).

Содержание алюминия в насыщенном слое может достигать 40–50 %, однако при превышении его концентрации 30% отмечается повышенная хрупкость слоя и для выравнивания его концентрации по сечению поверхностного слоя обычно выполняется термическая обработка. В табл. 6 приведены основные составы сред и режимов алитирования

Таблица 6.Составы сред и режимы алитирования сталей.

Состав насыщающей среды

Режим алитирования

Глубина слоя, мм

Т, °С

τ, ч

Алитирование в газообразных средах

Через алюминий или ферроалюминий пропускают соляную кислоту. Алитирование протекает за счет образования AlCl2

950–1050

2–5

0,25–0,4

Алитирование в порошковых средах*

49,5 % порошкообразного Al + 49 % Al2O3 + + до 1 % NH4Cl

950–1050

6–12

0,25–0,6

48 % ферроалюминия + + 48 % SiO2 + 4 % NH4Cl

Алитирование методом металлизации

На поверхность детали напыляют слой алюминия толщиной от 0,7 до 1,2 мм. Поверх напыленного слоя наносят слой обмазки, состоящий из 50 % графита + + 20 % жидкого стекла и 30 % SiO2

900–950

2–4

0,2–0,4

Алитирование в ваннах с расплавленным алюминием

Расплавленный алюминий (88–92 %) +

+ 8–12 % Fe**

680–750

0,25–1,0

0,05–0,25

Примечание:

* Приспособления для алитирования (ящики, контейнеры) подобны ящикам для цементации.

** Железо в расплав вводится во избежание растворения поверхности детали.

Так как углерод практически нерастворим в алитированном слое, то он оттесняется вглубь от поверхности детали, образуя под насыщенным алюминием слоем зону, обогащенную углеродом.

3.5.б Хромирование

Хромирование — способ химико-термической обработки, состоящий в высокотемпературном (900–1300 °С) диффузионном насыщении поверхности обрабатываемой детали хромом в насыщающих средах с целью придания ей жаростойкости (до 800 °С), коррозионной стойкости в пресной и морской воде, растворах солей и кислот, эрозионной стойкости. Диффузионное насыщение поверхности стали хромом, также уменьшает скорость ползучести материала повышает его сопротивление термическим ударам. Хромирование также повышает предел выносливости стали при комнатных и повышенных температурах, что связано с возникновением в слое сжимающих напряжений.

Хромированию подвергаются стали различных классов — ферритных, перлитных и аустенитных, сталей различного назначения.

Структура хромированного слоя напрямую зависит от содержания в стали углерода. Если в малоуглеродистых сталях этот слой обычно состоит из твердого раствора замещения хрома в a -железе, то в случае высокоуглеродистых материалов может образовываться слой карбидов, состоящий, например, для сталей с 0,8–1,0 % углерода из карбидов Сr23С6, расположенных в верхних слоях насыщенной хромом поверхности и карбида Cr7С3 лежащего ниже. Под карбидными слоями располагается эвтектоидный слой, состоящий из троостита и карбида Cr7С3. Кроме углерода на параметры хромированного слоя влияет легирующий комплекс стали. Все карбидообразующие элементы — вольфрам, молибден, титан, ванадий и т. д. — увеличивают глубину хромированного слоя; элементы, расширяющие аустенитную область, — никель, кобальт — уменьшают глубину хромирования. Это связано с особенностями диффузии хрома в a -Fe и g -Fe. С одной стороны, скорость диффузии атомов хрома в a -железе значительно выше, чем в аустените, с другой, — при легировании вольфрамом, молибденом и другими карбидообразующими элементами содержание хрома в стали в исходном, до химико-термической обработки, состоянии превосходит его концентрацию в сталях углеродистых или легированных, например только никелем.

Твердость насыщенной хромом поверхности у средне- и высокоуглеродистых сталей, то есть тогда, когда хром в поверхности находится в виде слоя карбидов, составляет 12 000–13 000 МПа. Твердость хромированного слоя у низкоуглеродистых сталей, когда хром находится в твердом растворе, не превышает 1500–3000 МПа.

В табл. 7 приведены основные составы сред и режимов хромирования. Наиболее широко применяется метод диффузионного хромирования в порошках, содержащих хром или феррохром и активные добавки в виде галогенидов аммония (контактный метод).

При этом подвергающиеся химико-термической обработке детали укладываются в специальные контейнеры (ящики) с двойными крышками для повышения герметичности и подвергаются высокотемпературным нагревам в соответствующих (табл.7) смесях в течение 6–12 ч. Особо широкое применение этого метода объясняется простотой применяемого оборудования, отсутствием необходимости создания специальных производств и участков.

Таблица 7. Составы сред и режимы хромирования сталей

Состав насыщающей среды

Режим

хромирования

Глубина слоя, мм

Т, °С

τ, час

Хромирование в порошковых средах (газовый метод)

50 % феррохрома или хрома + Al2O3 +

+ 1–2 % NH4Cl (или NH4I или NH4Br или NH4F);

5–10 % CrCl2 +

+ 90 % Al2O3

1000–1050

6–12

0,1–0,15

(0,01–0,03)*

Хромирование в вакууме (парогазовый метод)

Порошок хрома, образующий в вакууме при высоких температурах паровую фазу

1050–1100

4–15

0,05–0,25

(0,01–0,04)

Газовое хромирование (неконтактный метод)

CrCl2 + H2

1000–1050

6–12

0,1–0,2

(0,02–0,05)

Галогениды типа CrCl2, CrF2, CrI2, CrCl3 и др.

Хромирование в керамической массе (газовый метод, контактный способ)

Пористый фарфор, пеношамотный кирпич или глина, поры которых наполнены хлоридами хрома, а также хромом или феррохромом

1050

5–6

0,1–0,2

Жидкое хромирование

Расплавы солей BaCl2, MgCl2, NaCl, CaCl2 и др., к которым добавляют CrCl2 в количестве 15–20 % от массы нейтральных солей, или 20–25 % от массы нейтральных солей феррохрома, обработанного соляной кислотой

1000–1100

1–6

0,05–0,3

Вакуумное хромирование производится путем осаждения паров хрома на поверхность обрабатываемой детали разогретой до температур 1000–1100 °С при остаточном давлении 10–2–10–3 мм рт. ст. Этот метод привлекателен тем, что не требует в ходе химико-термической обработки применения агрессивных веществ, позволяет получать наиболее высококачественные поверхности деталей и может применяться для производства деталей ответственного назначения.

Газовое неконтактное хромирование ведется в ретортах, в печах с вращающейся ретортой или шахтных печах, в специальных контейнерах с нагревом в обычных нагревательных печах. Нагрев деталей осуществляется до температур порядка 1000–1100 °С в нейтральной или восстановительной среде или вакууме при остаточном давлении 10–3–10–5 мм рт. ст. В процессе химико-термической обработки через слой порошкообразного хрома или феррохрома пропускают соляную кислоту НСl или (НСl + Н2), или газообразный Сl2 — хромирование осуществляется за счет переноса атомов хрома соединением СrСl2. Кроме хлорида хрома могут быть использованы его другие галогениды, в частности, одной из лучших сред для газового хромирования считается иодид хрома — CrI2.

Кроме однокомпонентного насыщения поверхности стали хромом достаточно широкое применение нашли процессы совместного насыщения: углеродом и хромом — карбохромирование, хромом и кремнием — хромосилицирование, хромом и алюминием — хромоалитирование.

Карбохромирование — это процесс последовательного насыщения поверхности детали углеродом, а затем хромом, способствующий повышению твердости, износо- и жаропрочности, коррозионной стойкости материала. Режимы и способы данной химико-термической обработки соответ-ствуют режимам и способам цементации и хромирования изделий.

Хромосилицирование — это одновременное насыщение поверхности детали хромом и кремнием. Температура хромосилицирования составляет, в зависимости от состава обрабатываемого материала и способа хромосилицирования, 900–1200 °С. Детали, подвергшиеся хромосилицированию, по сравнению с хромированными деталями, обладают повышенной окалиностойкостью и кислотостойкостью, повышенным сопротивлением эрозии в области высоких температур.

Хромоалитирование — это совместное или последовательное насыщение поверхности детали хромом и алюминием. Температура процесса находится в пределах 900–1200 °С. Хромоалитирование проводится для создания в поверхности детали слоев с повышенной, по отношению к хромированным деталям, жаростойкостью, достигающей 900 °С, и эрозионной стойкостью. В зависимости от требований, предъявляемых к обрабатываемому изделию, и меняя состав насыщающей среды, возможно получение хромоалитированных слоев в различными соотношениями в концентрациях диффундирующих элементов.

3.5.в Титанирование

Титанирование — процесс диффузионного насыщения поверхности сталей титаном. Насыщение осуществляется при температурах порядка 1100 °С, глубина насыщения обычно не превышает 0,3 мм. С помощью титанирования стальным деталям придается исключительно высокая коррозионная стойкость, характерная для титана главным образом в средах различных кислот. Титанирование может проводиться в твердых (порошкообразных), жидких и газообразных насыщающих средах. Процесс по технологическим и химическим особенностям близок к хромированию — так же, как при хромировании, в поверхностных слоях малоуглеродистых сталей в процессе насыщения их титаном создается a -твердый раствор титана в железе, который содержит до 30 % титана. Также возможно образование в поверхностном слое сталей интерметаллидного соединения TiFе2. В сталях с высоким содержанием углерода в поверхностных слоях дополнительно образуются карбидные соединения, резко повышающие твердость насыщенного слоя.

3.5.г Цинкование

Цинкование — процесс диффузионного насыщения поверхности детали цинком. Химико-термические методы цинкования включают в себя горячее цинкование или цинкование погружением, цинкование в порошке цинка — шерардизация, цинкование в парах цинка. Кроме этих методов используется электролитическое цинкование, металлизация напылением и нанесение цинкосодержащих красок. Цинкование — процесс, способствующий резкому повышению коррозионной стойкости. Повышение коррозионной стойкости при цинковании стальных деталей достигается за счет двух химических процессов: цинк, по отношению к железу являясь электроположительным металлом, тормозит коррозию поверхности детали. Под воздействием атмосферной влаги на цинкованной поверхности стальной детали образуется слой карбонатов и оксидов цинка, оказывающий также защитное действие. Температура цинкования зависит от способа проведения операции. Так, при цинковании в порошках температура процесса колеблется в пределах 370–430 °С, при цинковании погружением — 430–470 °С. Также широк интервал времен выдержек при цинковании. Если при цинковании в порошковых смесях слой толщиной около 0,1 мм достигается в среднем за 10 часов, то при цинковании погружением толщину слоя в 0,3 мм получают в первые 10 секунд процесса.

Цинкование в парах цинка осуществляется в восстановительной среде водорода при температурах 850–880 °С и давлении около 80 мм водяного столба. Время такого процесса достаточно велико и обычно составляет десятки часов. Толщина полученных слоев обычно не превышает 0,1–0,2 мм.

В зависимости от режима насыщения в диффузионном слое на поверхности железа может образоваться η-фаза (твердый раствор железа в цинке), далее слой интерметаллидных фаз FeZn13, FeZn7, Fe3Zn10, а ближе к сердцевине — твердый раствор цинка в железе.

Для повышения коррозионной стойкости различных изделий (листы, трубы, проволока, посуда, аппаратура для получения спиртов, холодильников, газовых компрессоров и т. д.) чаще применяют цинкование путем погружения изделий в расплав цинка.

4.Заключение

В данной работе я рассмотрел понятия термической и химико-термическая обработки сплавов

Термическую обработку применяют для изменения механических свойств и структуры металлов и сплавов. Основные способы термической обработки – это отжиг, закалка и отпуск. Выбор того или иного способа термической обработки зависит от состава сплава и тех свойств которые хотим получить, на основании анализа диаграмм состояния. Также необходимо учитывать динамику изменений структуры материалов.

К химико-термической обработке относятся такие виды обработки сплавов,как: цементация, азотирование, нитроцементация, цианирование, борирование, силицирование, диффузионная металлизация стали и др.

Одним из наиболее эффективных и универсальных процессов химико-термической обработки является борирование.

Борирование применяют для повышения износостойкости поверхностного слоя стального изделия, в частности, при повышенных температурах, повышения его твердости и износостойкости.

Изделия, подвергшиеся борированию, обладают повышенной до 800 °С окалиностойкостью и теплостойкостью до 900–950 °С. Твердость борированного слоя в сталях перлитного класса составляет 15 000–20 000 МПа.

1. Волосатов В.А. Справочник по электрохимическим и электрофизическим методам обработки – М: Политехника, 1988. -265 с.

2. Каменичный И.С Краткий справочник технолога-термиста – М: Оборонгиз, 1963. -298 с.

3. Лахтин Ю.М., Рахштадт А.Г.Термическая обработка в машиностроении – М: ОЛМА-ПРЕСС, 1980. -426 с.

4. Сальников С.П. Краткий справочник машиностроителя – М: Машиностроение, 2001. -312 с.

5. Соломенцева Ю.М. Основы автоматизации машиностроительного производства – М: Машиностроение, 1999. -361 с.

6. Шаврин О.И. Технология и оборудование термомеханической обработки деталей машин – С-П: Символ-Плюс, 1996. -502 с.

7. www.naukaspb.ru

8. www.ucheba.ru

9. www.erudition.ru

10. www.chemport.ru

11 Травин О.В., Травина Н.Т. Материаловедение. – М.: Металлургия, 1989. – 360 с.

12. Лахтин Ю.М., Леонтьева В.П. Материаловедение: Учебник для машиностроительных вузов – 2-е изд., перераб. и доп. – М.: Машиностроение, 1980. – 493 с.