ми также называют и другие оптические приборы и явления, которые создают сходный оптический эффект, не обладая указанными внешними характеристиками. Например:
- Плоские «линзы», изготовленные из материала с переменным коэффициентом преломления, изменяющимся в зависимости от расстояния от центра
- линзы Френеля
- зонная пластинка Френеля, использующая явление дифракции
- «линзы» воздуха в атмосфере — неоднородность свойств, в частности, коэффициента преломления (проявляются в виде мерцания изображения звёзд в ночном небе).
- Гравитационная линза — наблюдаемый на межгалактических расстояниях эффект отклонения электромагнитных волн массивными объектами.
- Магнитная линза — устройство, использующее постоянное магнитное поле для фокусирования пучка заряженных частиц (ионов или электронов) и применяющееся в электронных и ионных микроскопах.
- Изображение линзы, сформированное оптической системой или частью оптической системы. Используется при расчёте сложных оптических систем.
1. История
Первое упоминание о линзах можно найти в древнегреческой пьесе Аристофана «Облака» (424 до н. э.), где с помощью выпуклого стекла и солнечного света добывали огонь.
Из произведений Плиния Старшего (23 — 79) следует, что такой способ разжигания огня был известен и в Римской империи — там также описан, возможно, первый случай применения линз для коррекции зрения — известно, что Нерон смотрел гладиаторские бои через вогнутый изумруд для исправления близорукости.
Сенека (3 до н. э. — 65) описал увеличительный эффект, который даёт стеклянный шар, заполненный водой.
Арабский математик Альхазен (965—1038) написал первый значительный трактат по оптике, описывающий, как хрусталик глаза создаёт изображение на сетчатке. Линзы получили широкое использование лишь с появлением очков примерно в 1280-х годах в Италии.
2. Характеристики простых линз
собирающие
Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием.
Для построения оптических приборов с исправленной оптической аберрацией (прежде всего — хроматической, обусловленной дисперсией света, — ахроматы и апохроматы) важны и иные свойства линз/их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.
Реферат линзы по физике
... до преломления были параллельны ее главной оптической оси (рис. 90, б). Фокус рассеивающей линзы мнимый. Главных фокусов - два; они расположены на главной оптической оси на одинаковом расстоянии от оптического центра линзы по разные ...
Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления (см. иммерсионный микроскоп, иммерсионные жидкости).
Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине), рассеивающей (утолщается к краям) или телескопической (фокусное расстояние равно бесконечности).
Так, например линзы очков для близоруких — как правило, отрицательные мениски.
Вопреки распространённому заблуждению, оптическая сила мениска с одинаковыми радиусами не равно нулю, а положительна, и зависит от показателя преломления стекла и от толщины линзы. Мениск, центры кривизны поверхностей которого находятся в одной точке называется концентрической линзой (оптическая сила всегда отрицательна).
Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.
Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись, а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса, или просто фокуса .
Если на линзу будет падать свет от очень удалённого источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под бо́льшим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется фокусом F’, а расстояние от центра линзы до фокуса — фокусным расстоянием.
Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым .
фокальной плоскостью
Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса — передний и задний . Расположены они на оптической оси по обе стороны линзы на фокусном расстоянии от главных точек линзы.
3. Ход лучей в тонкой линзе
Линза, для которой толщина принята равной нулю, в оптике называется «тонкой». Для такой линзы показывают не две главных плоскости, а одну, в которой как бы сливаются вместе передняя и задняя.
Рассмотрим построение хода луча произвольного направления в тонкой собирающей линзе. Для этого воспользуемся двумя свойствами тонкой линзы:
- Луч, прошедший через оптический центр линзы, не меняет своего направления;
- Параллельные лучи, проходящие через линзу, сходятся в фокальной плоскости.
Рассмотрим луч SA произвольного направления, падающий на линзу в точке A. Построим линию его распространения после преломления в линзе. Для этого построим луч OB, параллельный SA и проходящий через оптический центр O линзы. По первому свойству линзы луч OB не изменит своего направления и пересечёт фокальную плоскость в точке B. По второму свойству линзы параллельный ему луч SA после преломления должен пересечь фокальную плоскость в той же точке. Таким образом, после прохождения через линзу луч SA пойдёт по пути AB.
Построение изображения в линзах
... расстояние от источника до линзы больше фокусного, то лучи после преломления в линзе пересекут оптическую ось линзы в одной точке. Следовательно, выпуклая линза собирает лучи, идущие от источников, находящихся от линзы на расстоянии, большем её фокусного расстояния. ... выполняются, изображение , даваемое тонкой линзой , довольно не совершенно. Поэтому в большинстве случаев прибегают к построению более ...
Аналогичным образом можно построить другие лучи, например луч SPQ.
Обозначим расстояние SO от линзы до источника света через u, расстояние OD от линзы до точки фокусировки лучей через v, фокусное расстояние OF через f. Выведем формулу, связывающую эти величины.
Рассмотрим две пары подобных треугольников: 1) SOA и OFB; 2) DOA и DFB. Запишем пропорции
Разделив первую пропорцию на вторую, получим
После деления обоих частей выражения на v и перегруппировки членов, приходим к окончательной формуле
где — фокусное расстояние тонкой линзы.
4. Ход лучей в системе линз
Ход лучей в системе линз строится теми же методами, что и для одиночной линзы.
Рассмотрим систему из двух линз, одна из которых имеет фокусное расстояние OF, а вторая O 2 F2 . Строим путь SAB для первой линзы и продолжаем отрезок AB до вхождения во вторую линзу в точке C.
Из точки O 2 строим луч O2 E, параллельный AB. При пересечении с фокальной плоскостью второй линзы этот луч даст точку E. Согласно второму свойству тонкой линзы луч AB после прохождения через вторую линзу пойдёт по пути BE. Пересечение этой линии с оптической осью второй линзы даст точку D, где сфокусируются все лучи, вышедшие из источника S и прошедшие через обе линзы.
5. Построение изображения тонкой собирающей линзой
При изложении характеристики линз был рассмотрен принцип построения изображения светящейся точки в фокусе линзы. Лучи, падающие на линзу слева, проходят через её задний фокус, а падающие справа — через передний фокус. Следует учесть, что у рассеивающих линз, наоборот, задний фокус расположен спереди линзы, а передний позади.
Построение линзой изображения предметов, имеющих определённую форму и размеры, получается следующим образом: допустим, линия AB представляет собой объект, находящийся на некотором расстоянии от линзы, значительно превышающем её фокусное расстояние. От каждой точки предмета через линзу пройдёт бесчисленное количество лучей, из которых, для наглядности, на рисунке схематически изображён ход только трёх лучей.
действительным
В данном случае изображение получено в сопряжённом фокусе в некоторой фокальной плоскости FF, несколько удалённой от главной фокальной плоскости F’F’, проходящей параллельно ей через главный фокус.
Применение линз в жизни
... линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде: оптической силой линзы диоптрия (дптр) Фокусным расстояниям линз ... требует излома оптической оси прицела и применения призм для ее смещения; эти же призмы преобразуют перевернутое изображение в прямое. Системы со смещением оптической оси ...
Далее приведены различные случаи построения изображений предмета, помещённого на различных расстояниях от линзы.
Нетрудно заметить, что при приближении предмета из бесконечности к переднему фокусу линзы изображение удаляется от заднего фокуса и по достижении предметом плоскости переднего фокуса оказывается в бесконечности от него.
формулу линзы
6. Формула тонкой линзы
Расстояния от точки предмета до центра линзы и от точки изображения до центра линзы называются сопряжёнными фокусными расстояниями.
формулой тонкой линзы
где — расстояние от линзы до предмета; — расстояние от линзы до изображения; — главное фокусное расстояние линзы. В случае толстой линзы формула остаётся без изменения с той лишь разницей, что расстояния отсчитываются не от центра линзы, а от главных плоскостей.
Для нахождения той или иной неизвестной величины при двух известных пользуются следующими уравнениями:
Следует отметить, что знаки величин u , v , f выбираются исходя из следующих соображений — для действительного изображения от действительного предмета в собирающей линзе — все эти величины положительны. Если изображение мнимое — расстояние до него принимается отрицательным, если предмет мнимый — расстояние до него отрицательно, если линза рассеивающая — фокусное расстояние отрицательно.
7. Масштаб изображения
Масштабом изображения ( ) называется отношение линейных размеров изображения к соответствующим линейным размерам предмета. Это отношение может быть косвенно выражено дробью , где — расстояние от линзы до изображения; — расстояние от линзы до предмета.
Здесь есть коэффициент уменьшения, т. е. число, показывающее во сколько раз линейные размеры изображения меньше действительных линейных размеров предмета.
В практике вычислений гораздо удобнее это соотношение выражать в значениях или , где — фокусное расстояние линзы.
.
8. Расчёт фокусного расстояния и оптической силы линзы
Значение фокусного расстояния для линзы может быть рассчитано по следующей формуле:
- , где
— коэффициент преломления материала линзы,
толщина линзы
где R>0 если центр кривизны находится справа от главной оптической оси; R<0 если центр кривизны находится слева от главной оптической оси. Например, для двояковыпуклой линзы будет выполняться условие 1/F=(n-1)(1/R1+1/R2)
Линза реферат аза ша
... с радиусами и поверхностей линзы (рис. 174) и расстоянием предмета от линзы. Такую линзу называют тонкой линзой. В дальнейшем говоря о линзе, мы всегда будем подразумевать тонкую линзу. Точки А и . ... ее фокусов. Это означает, что, зная расстояние от источника до линзы и фокусное расстояние (положение фокусов), можно определить расстояние до изображения, не прибегая к рассмотрению хода лучей ...
формулой тонкой линзы
Указанные формулы могут быть получены аккуратным рассмотрением процесса построения изображения в линзе с использованием закона Снелла, если перейти от общих тригонометрических формул к параксиальному приближению.
Линзы симметричны, то есть они имеют одинаковое фокусное расстояние независимо от направления света — слева или справа, что, однако, не относится к другим характеристикам, например, аберрациям, величина которых зависит от того, какой стороной линза повёрнута к свету.
9. Комбинация нескольких линз (центрированная система)
Линзы могут комбинироваться друг с другом для построения сложных оптических систем. Оптическая сила системы из двух линз может быть найдена как простая сумма оптических сил каждой линзы (при условии, что обе линзы можно считать тонкими и они расположены вплотную друг к другу на одной оси):
- .
Если линзы расположены на некотором расстоянии друг от друга и их оси совпадают (система из произвольного числа линз, обладающих таким свойством, называется центрированной системой), то их общую оптическую силу с достаточной степенью точности можно найти из следующего выражения:
- ,
где — расстояние между главными плоскостями линз.
10. Недостатки простой линзы
В современной фотоаппаратуре к качеству изображения предъявляются высокие требования.
Изображение, даваемое простой линзой, в силу целого ряда недостатков не удовлетворяет этим требованиям. Устранение большинства недостатков достигается соответствующим подбором ряда линз в центрированную оптическую систему — объектив. Изображения, полученные при помощи простых линз, имеют различные недостатки. Недостатки оптических систем называются аберрациями, которые делятся на следующие виды:
- Геометрические аберрации
- Сферическая аберрация;
- Кома;
- Астигматизм;
- Дисторсия;
- Кривизна поля изображения;
- Хроматическая аберрация;
- Дифракционная аберрация (эта аберрация вызывается другими элементами оптической системы, и к самой линзе отношения не имеет).
11. Линзы со специальными свойствами
11.1. Линзы из органических полимеров
Полимеры дают возможность создавать недорогие асферические линзы с помощью литья.
кремний-органического или кремний-фторорганического полимера силикона
11.2. Линзы из кварца
Кварцевое стекло — переплавленный чистый кремнезём с незначительными (около 0,01 %) добавками Al 2 О3 , СаО и MgO. Оно отличается высокой термостойкостью и инертностью ко многим химическим реактивам за исключением плавиковой кислоты.
Аберрации оптических систем
... изображения и предмета. 1.1. Теория аберраций Теория геометрических аберраций устанавливает функциональную зависимость аберраций от координат падающего луча и конструктивных элементов оптической системы — от радиусов её поверхностей, толщин, показателей преломления линз ... раздела про оптическую терминологию из «Canon Lens Work II» - www.photoweb.ru/lenswork1.htm#33 Данный реферат составлен на основе ...
Прозрачное кварцевое стекло хорошо пропускает ультрафиолетовые и видимые лучи света.
11.3. Линзы из кремния
Кремний сочетает сверхвысокую дисперсию с самым большим абсолютным значением коэффициента преломления n=3,4 в диапазоне ИК-излучения и полной непрозрачностью в видимом диапазоне спектра. [2]
Кроме того, именно свойства кремния и новейшие технологии его обработки позволили создать линзы для рентгеновского диапазона электромагнитных волн.
12. Применение линз
Линзы являются универсальным оптическим элементом большинства оптических систем.
Традиционное применение линз — бинокли, телескопы, оптические прицелы, теодолиты, микроскопы и фотовидеотехника. Одиночные собирающие линзы используются как увеличительные стёкла.
Другая важная сфера применения линз офтальмология, где без них невозможно исправление недостатков зрения — близорукости, дальнозоркости, неправильной аккомодации, астигматизма и других заболеваний. Линзы используют в таких приспособлениях, как очки и контактные линзы.
В радиоастрономии и радарах часто используются диэлектрические линзы, собирающие поток радиоволн в приёмную антенну, либо фокусирующие на цели.
В конструкции плутониевых ядерных бомб для преобразования сферической расходящейся ударной волны от точечного источника (детонатора) в сферическую сходящуюся применялись линзовые системы, изготовленные из взрывчатки с разной скоростью детонации (то есть с разным коэффициентом преломления).
Примечания
Данный реферат составлен на основе .