Человек изобрел много разных источников света — от уже ушедших в прошлое свечей до современных ламп накаливания и ламп дневного света. В начале 60-х годов нашего столетия появились новые источники оптического излучения — лазеры.
В отличие от прежних источников света, применявшихся в основном для освещения, лазеры предназначаются для совсем иных целей. Лазерным лучом разрезают материалы (от обычных тканей до стальных листов), сваривают, выполняют хирургические операции; лазерное излучение применяют для точнейших измерений, используют в современных вычислительных комплексах и линиях связи.
В своём реферате я расскажу о том, что же такое лазер, каков его принцип действия, каких видов бывают лазеры.
Лазер (англ. laser, акроним от a mplification by s timulated e mission of r adiation «усиление света посредством вынужденного излучения»), или оптический квантовый генератор — это устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.
Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»).
Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.
Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённом состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей).
В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.).
Лазеры и их применение (2)
... и узконаправленного потока излучения. Физической основой работы лазера служит квантовомеханическое явление вынужденного (индуцированного) излучения. Луч лазера может быть ... света является и Солнце и пр. Их спонтанное излучение некогерентно. Но атом может также излучить фотон ... см), в 1960 - лазер на рубине и газовый лазер, и спустя два года - полупроводниковый лазер. 2. История открытия Одним ...
Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное — через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы).
Этот режим работы лазера называют режимом модулированной добротности.
Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляризаторы, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.
— Твердотельные лазеры на люминесцирующих твёрдых средах (диэлектрические кристаллы и стёкла).
В качестве активаторов обычно используются ионы редкоземельных элементов или ионы группы железа Fe. Накачка оптическая и от полупроводниковых лазеров, осуществляется по трёх- или четырёхуровневой схеме. Современные твердотельные лазеры способны работать в импульсном, непрерывным и квазинепрерывном режимах.
Полупроводниковые лазеры., Лазеры на красителях., Газовые лазеры, Газодинамические лазеры, Эксимерные лазеры, Химические лазеры, Лазеры на свободных электронах, Квантовые каскадные лазеры, Волоконный лазер, Вертикально-излучающие лазеры (VCSEL)
- Другие виды лазеров, развитие принципов которых на данный момент является приоритетной задачей исследований (рентгеновские лазеры, гамма-лазеры и др.).
С момента своего изобретения лазеры зарекомендовали себя как «готовые решения ещё неизвестных проблем». В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту(проигрыватели компакт-дисков, лазерные принтеры, считыватели штрих-кодов, лазерные указки и пр.).
Легко достижимая высокая плотность энергии излучения позволяет производить локальную термическую обработку и связанную с ней механическую обработку (резку, сварку, пайку, гравировку).
Лазеры и их применение
... цели и задачи, методы исследования и используемый материал. В первой главе раскрывается принцип работы различных видов лазеров. Во второй главе рассматриваются сферы и области применения лазеров. ... характерна чрезвычайно высокая степень монохроматичности их излучения. Любой поток электромагнитных волн всегда обладает набором частот. Излучение и поглощение атомной системы характеризуется не ...
Точный контроль зоны нагрева позволяет сваривать материалы, которые невозможно сварить обычными способами (к примеру, керамику и металл).
Луч лазера может быть сфокусирован в точку диаметром порядка микрона, что позволяет использовать его в микроэлектронике для прецизионной механической обработки материалов (резка полупроводниковых кристаллов, сверление особо тонких отверстий в печатных платах).
Широкое применение получила также лазерная маркировка и художественная гравировка изделий из различных материалов (в том числе объёмная гравировка прозрачных материалов).
Лазеры используются для получения поверхностных покрытий материалов (лазерное легирование, лазерная наплавка, вакуумно-лазерное напыление) с целью повышения их износостойкости. При лазерной обработке материалов на них не оказывается механическое воздействие, зона нагрева мала, поэтому возникают лишь незначительные термические деформации. Кроме того, весь технологический процесс может быть полностью автоматизирован. Лазерная обработка потому характеризуется высокой точностью и производительностью. лазер оптический квантовый излучение
Лазеры применяются в голографии для создания самих голограмм и получения голографического объёмного изображения. Некоторые лазеры, например лазеры на красителях, способны генерировать монохроматический свет практически любой длины волны, при этом импульсы излучения могут достигать 10?16 с, а следовательно и огромных мощностей (так называемые гигантские импульсы).
Эти свойства используются в спектроскопии, а также при изучении нелинейных оптических эффектов. С использованием лазера удалось измерить расстояние до Луны с точностью до нескольких сантиметров. Лазерная локация космических объектов уточнила значения ряда фундаментальных астрономических постоянных и способствовала уточнению параметров космической навигации, расширила представления о строении атмосферы и поверхности планет Солнечной системы. В астрономических телескопах, снабжённых адаптивной оптической системой коррекции атмосферных искажений, лазер применяют для создания искусственных опорных звезд в верхних слоях атмосферы.
Применение лазеров в метрологии и измерительной технике не ограничивается измерением расстояний. Лазеры находят здесь разнообразнейшее применение: для измерения времени, давления, температуры, скорости потоков жидкостей и газов, угловой скорости (лазерный гироскоп), концентрации веществ, оптической плотности, разнообразных оптических параметров и характеристик, в виброметрии и др.
Сверхкороткие импульсы лазерного излучения используются в лазерной химии для запуска и анализа химических реакций. Здесь лазерное излучение позволяет обеспечить точную локализацию, дозированность, абсолютную стерильность и высокую скорость ввода энергии в систему. В настоящее время разрабатываются различные системы лазерного охлаждения, рассматриваются возможности осуществления с помощью лазеров управляемого термоядерного синтеза. Лазеры используются и в военных целях, например, в качестве средств наведения и прицеливания. Рассматриваются варианты создания на основе мощных лазеров боевых систем защиты воздушного, морского и наземного базирования.
Применение визуальной лазерной системы посадки для повышения ...
... Целью дипломной работы является обоснование возможности комплексного применения лазерной визуальной системы посадки и светосигнального оборудования (ССО) для снижения метеорологического минимума аэродромома. В ... условиях загрязненной атмосферой. Обычно лазерная система оптической посадки ЛА на аэродром может содержать один, два или несколько лазеров. Направленное излучение лазера может либо точно ...
В медицине лазеры применяются как бескровные скальпели, используются при лечении офтальмологических заболеваний (катаракта, отслоение сетчатки, лазерная коррекция зрения и др.).
Широкое применение получили также в косметологии(лазерная эпиляция, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление татуировок и пигментных пятен).
лазерная связь
Для изучения взаимодействия лазерного излучения с веществом и получения управляемого термоядерного синтеза строят большие лазерные комплексы, мощность которых может превосходить 1 ПВт.
Основные даты в истории изобретения лазеров.
- 1916 год: А. Эйнштейн предсказывает существование явления вынужденного излучения — физической основы работы любого лазера.
- Строгое теоретическое обоснование в рамках квантовой механики это явление получило в работах П. Дирака в 1927—1930 гг.
- 1928 год: экспериментальное подтверждение Р.
Ладенбургом и Г. Копферманном существования вынужденного излучения.
- В 1940 г. В. Фабрикантом и Ф. Бутаевой была предсказана возможность использования вынужденного излучения среды с инверсией населённостей для усиленияэлектромагнитного излучения.
— 1950 год: А. Кастлер (Нобелевская премия по физике 1966 года) предлагает метод оптической накачки среды для создания в ней инверсной населённости. Реализован на практике в 1952 году Бросселем, Кастлером и Винтером. До создания квантового генератора оставался один шаг: ввести в среду положительную обратную связь, то есть поместить эту среду в резонатор.
— 1954 год: первый микроволновой генератор — мазер на аммиаке (Ч. Таунс, Басов Н.Г. и Прохоров А.М. — Нобелевская премия по физике 1964 года).
Роль обратной связи играл объёмный резонатор, размеры которого были порядка 12,6 мм (длина волны, излучаемой при переходе аммиака с возбуждённого колебательного уровня на основной).
Для усиления электромагнитного излучения оптического диапазона необходимо было создать объёмный резонатор, размеры которого были бы порядка микрона. Из-за связанных с этим технологических трудностей многие учёные в то время считали, что создать генератор видимого излучения невозможно.
— 1960 год: 16 мая Т. Мейман продемонстрировал работу первого оптического квантового генератора — лазера. В качестве активной среды использовался кристалл искусственного рубина (оксид алюминия Al2O3 с небольшой примесью хрома Cr), а вместо объёмного резонатора служил резонатор Фабри-Перо, образованный серебряными зеркальными покрытиями, нанесёнными на торцы кристалла. Этот лазер работал в импульсном режиме на длине волны 694,3 нм. В декабре того же года был создан гелий-неоновый лазер, излучающий в непрерывном режиме (А. Джаван, У. Беннет, Д. Хэрриот).
Изначально лазер работал в инфракрасном диапазоне, затем был модифицирован для излучения видимого красного света с длиной волны 632,8 нм.
— Физика лазеров и по сей день интенсивно развивается. С момента изобретения лазера почти каждый год появлялись всё новые его виды, приспособленные для различных целей. В 1961 г. был создан лазер на неодимовом стекле, а в течение следующих пяти лет были разработаны лазерные диоды, лазеры на красителях, лазеры на двуокиси углерода, химические лазеры. В 1963 г. Ж. Алфёров и Г. Кремер (Нобелевская премия по физике 2000 г.) разработали теорию полупроводниковых гетероструктур, на основе которых были созданы многие лазеры.
Лазеры и их применение в медицине (3)
... резонатор должен иметь минимальные потери в рабочей части спектра, высокую точность изготовления узлов и их взаимной установки. Создание лазеров оказалось возможным в результате реализации трех фундаментальных физических идей: вынужденного излучения, ...
Первый лазер появился в 1960 г. Однако историю рождения лазерной техники следует отсчитывать от начала 50-х годов. Дело в том, что способ усиления излучения при помощи вынужденного испускания был сначала реализован не в оптическом, а сверхчастотном диапазоне — СВЧ-диапазоне. Соответствующие генераторы излучения (их называли мазерами) были созданы в 1955 г. Одновременно в СССР (Н.Г.Басов, А.М.Прохоров) и в США (Ч. Таунс).
За последние несколько лет в России и за рубежом были проведены обширные исследования в области квантовой электроники, созданы разнообразные лазеры, а также приборы, основанные на их использовании. Лазеры теперь применяются в локации и связи, в космосе и на земле, в медицине и строительстве, в вычислительной технике и промышленности, в военной технике. Появилось новое научное направление — голография, становление и развитие которой также немыслимо без лазеров.
Молодому поколению нужно знать об этом интересном приборе, переделывающем мир, как можно больше, и быть готовым к его использованию в учебной, научной и военной деятельности.
1. Тарасов Л. В. Физика процессов в генераторах когерентного оптического излучения. — М.: Радио и связь, 1981. — 440 с.
2. Кондиленко И. И., Коротков П. А., Хижняк А. И. Физика лазеров. — Киев: Вища школа, 1984. — 232 с.
3. Звелто О. Принципы лазеров. — М.: Мир, 1990. — 559 с. — ISBN 5-03-001053-X.
4. Бруннер В. Справочник по лазерной технике: Пер. с нем. — М.: Энергоатомиздат, 1991. — 544 с. — ISBN 5-283-02480-6.
5. Квантовая электроника. Маленькая энциклопедия под. ред. М. Е. Жаботинского. — М.: «Советская энциклопедия», 1969. — 500 с.
6. Тарасов Л. В. Лазеры. Действительность и надежды. — М.: Наука, 1985. — Т. 42. — 176 с. — (Библиотечка «Квант»).
7. William T. Silfvast. Laser Fundamentals. — New York: Cambridge University Press, 1996. — ISBN 0-521-55617-1. (англ.)
8. К 50-летию создания лазеров (рус.) // УФН. — 2011. — Т. 181.