Электрический ток в жидкостях (электролитах)

С электропроводностью растворов солей в воде (электролитов) связано очень многое в нашей жизни. С первого удара сердца («живое» электричество в теле человека, на 80% состоящем из воды) до автомобилей на улице, плееров и мобильных телефонов (неотъемлимой частью этих устройств являются «батарейки» – электрохимические элменты питания и различные аккумуляторы – от свинцово-кислотных в автомобилях до литий-полимерных в самых дорогих мобильных телефонах).

В огромных, дымящихся ядовитыми парами чанах из расплавленного при огромной температуре боксита электролизом получают алюминий – «крылатый» металл для самолётов и банок для «Фанты». Все вокруг – от хромированной решетки радиатора иномарки до посеребрённой серёжки в ухе когда-либо сталкивалось с раствором или расплавом солей, а следовательно и с электротоком в жидкостях. Не зря это явление изучает целая наука – электрохимия. Но нас сейчас больше интересуют физические основы этого явления.

Из уроков физики в 8 классе нам известно, что заряд в проводниках (металлах) переносят отрицательно заряженные электроны.

Упорядоченное движение заряженных частиц называется электрическим током.

Но если мы соберем прибор (с электродами из графита):

Электрический ток в жидкостях (электролитах) 1

то убедимся, что стрелка амперметра отклоняется – через раствор идет ток! Какие же заряженные частицы есть в растворе?

Ещё в 1877 году шведский ученый Сванте Аррениус, изучая электропроводность растворов различных веществ, пришел к выводу, что её причиной являются ионы, которые образуются при растворении соли в воде. При растворении в воде молекула CuSO 4 распадается (диссоциирует) на два разнозаряженных иона – Cu2+ и SO4 2- . Упрощенно происходящие процессы можно отразить следующей формулой:

CuSO 4 ÞCu2+ +SO4 2-

  • Проводят электрический ток растворы солей, щелочей, кислот.
  • Вещества, растворы которых проводят электрический ток, называются электролитами.
  • Растворы сахара, спирта, глюкозы и некоторых других веществ не проводят электрический ток.
  • Вещества, растворы которых не проводят электрический ток, называются неэлектролитами.

Электролитическая диссоциация , Процесс распада электролита на ионы называется электролитической диссоциацией.

С. Аррениус, который придерживался физической теории растворов, не учитывал взаимодействия электролита с водой и считал, что в растворах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяковский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита происходит химическое взаимодействие растворённого вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, то есть «одетые в шубку» из молекул воды. Следовательно, диссоциация молекул электролитов происходит в следующей последовательности:

10 стр., 4610 слов

Измерение концентрации растворов. Концентратомеры кислоты, щелочей и солей

... электрический способ измерения. При погружении в раствор электродов из определенных материалов на границе между электродом и раствором возникает электрический потенциал, зависящий от температуры и концентрации водородных ионов в растворе. ... что предотвращает чрезмерное накопление газов в холодильнике и ограничивает их растворение в конденсате. При выходе из холодильника в расширитель температура ...

а) ориентация молекул воды вокруг полюсов молекулы электролита

б) гидратация молекулы электролита

в) её ионизация

г) распад её на гидратированные ионы

По отношению к степени электролитической диссоциации электролиты делятся на сильные и слабые.

Сильные электролиты

У них значение степени диссоциации стремится к единице.

Слабые электролиты

гидратированные ионы

Температурная зависимость сопротивления электролита , При повышении температуры

Катод и анод. Катионы и анионы

А что же происходит с ионами под воздействием электрического тока?

Вернёмся к нашему прибору:

Температурная зависимость сопротивления электролита  1

Положительно заряженный ион

Первый закон Фарадея

А можем ли мы узнать сколько меди выделилось? Взвешивая катод до и после опыта, можно точно определить массу осадившегося металла. Измерения показывают, что масса вещества, выделевшегося на электродах, зависит от силы тока и времени электролиза:

m=K´I´t

электрохимическим эквивалентом

Следовательно, масса выделевшегося вещества прямо пропорциональна силе тока и времени электролиза. Но ток за время (согласно формуле):

q=I´t

есть заряд.

Итак, масса вещества, выделевшегося на электроде, пропорциональна заряду, или количеству электричества, прошедшему через электролит.

M=K´q

первый закон Фарадея

Второй закон Фарадея

А что такое и от чего зависит электрохимический эквивалент? На этот вопрос тоже дал ответ Майкл Фарадей.

На основании многочисленных опытов он пришёл к выводу, что эта величина является характерной для каждого вещества. Так, например при электролизе раствора ляписа (азотнокислого серебра AgNO 3 ) 1 кулон выделяет 1,1180 мг серебра; точно такое же количество серебра выделяется при электролизе зарядом в 1 кулон любой серебряной соли. При электролизе соли другого металла 1 кулон выделяет другое количество данного металла. Таким образом, электрохимическим эквивалентом какого-либо вещества называется масса этого вещества, выделяемая при электролизе 1кулоном протекшего через раствор электричества . Приведем его значения для некоторых веществ:

Вещество

K в мг/к

Ag (серебро)

1,118

H (водород)

0,01045

Cu (медь)

0,3294

Zn (цинк)

0,3388

второй закон Фарадея

Второй закон фарадея 1

Электрохимические эквиваленты различных веществ пропорциональны их атомным весам и обратно пропорциональны числам, выражающим их химическую валентность.

Где:

n – валентность

A – атомный вес

Второй закон фарадея 2 – называют химическим эквивалентом данного вещества

Второй закон фарадея 3 – коэффициент пропорциональности, который является уже универсальной постоянной, то есть имеет одинаковое значение для всех веществ. Если измерить электрохимический эквивалент в г/к то найдем, что он равен 1,037´10-5 г/к .

Обьединяя первый и второй законы Фарадея получаем:

Второй закон фарадея 4

Эта формула имеет простой физический смысл: F численно равно заряду, котоый надо пропустить через любой электролит, чтобы выделить на электродах вещество в количестве, равном одному химическому эквиваленту. F называют числом Фарадея и оно равно 96400 к/г.

Моль и количество молекул в нем. Число Авогадро

Из курса химии за 8й класс мы знаем, что для измерения количеств веществ, участвующих в химических реакциях, была выбрана особая еденица – моль. Чтобы отмерять один моль вещества, нужно взять столько граммов его, какова относительная молекулярная масса его.

содержит одинаковое число молекул

Моль – это такое количество вещества, в котором содержится 6

В честь итальянского ученого А. Авогадро это число ( N ) называется постоянной Авогадро или числом Авогадро .

Моль это такое количество вещества 1

Моль это такое количество вещества 2

Применение электролиза

Электролитический метод получения чистых металлов (рафинирование, аффинаж).

Электролиз, сопровождающийся растворением анода

Хорошим примером является электролитическое очищение (рафинирование) меди. Полученная непосредственно из руды медь отливается в виде пластин и помещается в качестве анода в раствор CuSO 4 . Подбирая напряжение на электродах ванны (0,20-0,25в), можно добиться, чтобы на катоде выделялась только металлическая медь. При этом посторонние примеси либо переходят в раствор (без выделения на катоде), либо выпадают на дно ванны в виде осадка («анодный шлам»).

Катионы вещества анода соединяются с анионом SO4 2- , а на катоде при этом напряжении выделяется только металлическая медь. Анод как бы «растворяется». Такая очистка позволяет добится чистоты 99,99% («четыре девятки»).

Аналогично (аффинаж) очищают и драгоценные металлы (золото Au, серебро Ag).

В настоящее время весь алюминий (Al) добывается электролитически (из расплава бокситов).

Гальванотехника

Гальванотехника

гальваностегией

Применение электролиза 1

гальванопластикой

Применение электролиза 2

Кроме указанных выше, электролиз нашел применение и в других областях:

  • получение оксидных защитных пленок на металлах (анодирование);
  • электрохимическая обработка поверхности металлического изделия (полировка);
  • электрохимическое окрашивание металлов (например, меди, латуни, цинка, хрома и др.);
  • очистка воды – удаление из нее растворимых примесей. В результате получается так называемая мягкая вода (по своим свойствам приближающаяся к дистиллированной);
  • электрохимическая заточка режущих инструментов (например, хирургических ножей, бритв и т.д.).

Список использованной литературы:

[Электронный ресурс]//URL: https://drprom.ru/referat/na-temu-elektricheskiy-tok-v-rastvorah-i-rasplavah-elektrolitov/

1. Гуревич А. Е. «Физика. Электромагнитные явления. 8 класс» Москва, Издательский дом «Дрофа». 1999 год.

2. Габриэлян О. С. «Химия. 8 класс» Москва, Издательский дом «Дрофа». 1997 год.

3. «Элементарный учебник физики под редакцией академика Г. С. Ландсберга — Том II – электричество и магнетизм». Москва, «Наука» 1972 год.

4. Eric M. Rogers. «Physics for the Inquiring Mind (the methods, nature and phylosophy of physical science)». «Prinseton University press» 1966. Том III – электричество и магнетизм. Перевод Москва, «Мир» 1971 год.

5. А. Н. Ремизов «Курс физики, электроники и кибернетики для медицинских институтов». Москва, «Высшая школа» 1982 год.