Медь (лат. Cuprum) — химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным — медь была хорошо известна египтянам еще за 4000 лет до Р. Хр. Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состаянии на поверхности земли, а с другой — сравнительной легкостью получения ее из соединений. Древняя Греция и Рим получали медь с острова Кипра (Cyprum), откуда и название ее Cuprum. Особенно важна медь для электротехники.
По электропроводности медь занимает второе место среди всех металлов, после серебра. Однако в наши дни во всем мире электрические провода, на которые раньше уходила почти половина выплавляемой меди, все чаще делают из алюминия. Он хуже проводит ток, но легче и доступнее. Медь же, как и многие другие цветные металлы, становится все дефицитнее. Если в 19 в. медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%-ные медные руды считаются очень богатыми, а промышленность многих стран перерабатывает руды, в которых всего 0,5% меди.
Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата — медного купороса. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь совершенно необходима всему живому.
Таким образом, разделение металлов на черные и цветные является условным. Обычно к черным металлам относят железо, марганец и хром, а остальные металлы к цветным. Термин цветные металлы не следует понимать буквально. Фактически существует лишь два цветных металла: розовая медь и желтое золото, а в отношении же остальных металлов можно говорить не об их цвете, а об их различных оттенках, чаще всего серебристо-серого или красного тонов.
Также условно цветные металлы можно разделить на четыре группы:
1 Тяжелые металлы – Cu, Ni, Pb, Zn, Sn;
2 Легкие металлы – Al, Mg, Ca, K, Na, Ba, Be, Li;
3 Благородные металлы — Au, Ag, Pt и ее природные спутники
4 Редкие металлы:
- тугоплавкие
- легкие
- радиоактивные
- редкоземельные
СВОЙСТВА МЕДИ
Медь — химический элемент I группы периодической системы Менделеева; атомный номер 29, атомная масса 63,546. Температура плавления- 1083° C; температура кипения — 2595° C; плотность — 8,98 г/см 3 . По геохимической классификации В.М. Гольдшмидта, медь относится к халькофильным элементам с высоким сродством к S, Se, Te, занимающим восходящие части на кривой атомных объемов; они сосредоточены в нижней мантии, образуют сульфиднооксидную оболочку.
Металлургия меди
... окисленной форме (медные руды); 4) самородные, содержащие металлы в свободном состоянии. В самородном состоянии в природе встречаются золото, серебро, медь и платина. Сульфидные руды по форме размещения ... компонента. Наиболее сложными по составу являются медные, медно-никелевые и свинцово-медно-цинковые руды. Они содержат до 10-15 ценных металлов. Руды цветных металлов, как правило, очень бедные и ...
Вернадским в первой половине 1930 г были проведены исследования изменения изотопного состава воды, входящего в состав разных минералов, и опыты по разделению изотопов под влиянием биогеохимических процессов, что и было подтверждено последующими тщательными исследованиями. Как элемент нечетный состоит из двух нечетных изотопов 63 и 65 На долю изотопа Cu (63) приходится 69,09%, процентное содержание изотопа Cu (65) — 30,91%. В соединениях медь проявляет валентность +1 и +2, известны также немногочисленные соединения трехвалентной меди.
К валентности 1 относятся лишь глубинные соединения, первичные сульфиды и минерал куприт — Cu2O. Все остальные минералы, около сотни отвечают валентности два. Радиус одновалентной меди +0.96, этому отвечает и эк — 0,70. Величина атомного радиуса двухвалентной меди — 1,28; ионного радиуса 0,80.
Очень интересна величена потенциалов ионизации: для одного электрона — 7,69, для двух — 20,2. Обе цифры очень велики, особенно вторая, показывающая большую трудность отрыва наружных электронов. Одновалентная медь является равноквантовой и потому ведет к бесцветным солям и слабо окрашенным комплексам, тогда как разноквантовя двух валентная медь характеризуется окрашенностью солей в соединении с водой.
Медь — металл сравнительно мало активный. В сухом воздухе и кислороде при нормальных условиях медь не окисляется. Она достаточно легко вступает в реакции с галогенами, серой, селеном. А вот с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют.
Электроотрицательность атомов — способность при вступлении в соединения притягивать электроны. Электроотрицательность Cu 2+ — 984 кДЖ/моль, Cu+ — 753 кДж/моль. Элементы с резко различной ЭО образуют ионную связь, а элементы с близкой ЭО — ковалентную. Сульфиды тяжелых металлов имеют промежуточную связь, с большей долей ковалентной связи (ЭО у S-1571, Cu-984, Pb-733).
Медь является амфотерным элементом — образует в земной коре катионы и анионы.
Медь входит более чем в 198 минералов, из которых для промышленности важны только 17, преимущественно сульфидов, фосфатов, силикатов, карбонатов, сульфатов. Главными рудными минералами являются халькопирит CuFeS 2 , ковеллин CuS, борнит Cu5 FeS4 , халькозин Cu2 S.
Окислы: тенорит, куприт. Карбонаты: малахит, азурит. Сульфаты: халькантит, брошантит. Сульфиды: ковеллин, халькозин, халькопирит, борнит.
Чистая медь — тягучий, вязкий металл красного, в изломе розового цвета, в очень тонких слоях на просвет медь выглядит зеленовато-голубой. Эти же цвета, характерны и для многих соединений меди, как в твердом состоянии, так и в растворах.
Понижение окраски при повышении валентности видно из следующих двух примеров:
Реферат по химии руды
... руда магнетит, Fe3О4; содержит 72,4% Fe), бурые железняки (руда гидрогетит НFeO2 n H2O), а также шпатовые железняки (руда сидерит, карбонат железа, ... на землю метеоритах. По запасам железных руд Россия занимает первое место в мире. В морской воде 1·10-5-1·10-8% железа. 2. История получения железа ... При нагревании порошка серы и железа образуется сульфид, приближенную формулу которого можно записать ...
CuCl — белый, Cu 2 O — красный, CuCl2 +H2 O — голубой, CuO — черный
Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем намечается интересный практический признак для поисков.
Практическое значение имеют: самородная медь, сульфиды, сульфосоли и карбонаты (силикаты).
СЫРЬЕ ДЛЯ ПОЛУЧЕНИЯ МЕДИ
Для получения меди применяют медные руды, а также отходы меди и ее сплавов. В рудах содержится 1-6% меди.
В рудах медь обычно находится в виде сернистых соединений (медный колчедан или халькопирит CuFeS 2 , халькозин Cu2 S, ковелин CuS), оксидов (куприт Cu2 O, тенорит CuO) или гидрокарбонатов (малахит CuCO3 × Cu(OH2 ), азурит 2CuCO3 × Cu(OH)2 ).
Пустая порода состоит из пирита FeS, кварца SiO 2 , карбонатов магния и кальция (MgCO3 и CaCO3 ), а также из различных силикатов, содержащих Al2 O3 , CaO, MgO и оксиды железа.
В рудах иногда содержится значительное количество других металлов: цинк, олово, никель, золото, серебро, кремний и другие.
Руда делится на сульфидные, окисленные и смешанные. Сульфидные руды бывают обычно первичного происхождения, а окисленные руды образовались в результате окисления металлов сульфидных руд.
В небольших количествах встречаются так называемые самородные руды, в которых медь находится в свободном виде.
ПИРОМЕТАЛЛУРГИЧЕСКИЙ СПОСОБ ПРОИЗВОДСТВА МЕДИ.
Известны два способа извлечения меди из руд и концентратов: гидрометаллургический и пирометаллургический.
Первый из них не нашел широкого применения. Его используют при переработке бедных окисленных и самородных руд. Этот способ в отличии от пирометаллургического не позволяет извлечь попутно с медью драгоценные металлы.
Второй способ пригоден для переработки всех руд и особенно эффективен в том случае, когда руды подвергаются обогащению.
Основу этого процесса составляет плавка, при которой расплавленная масса разделяется на два жидких слоя: штейн-сплав сульфидов и шлак-сплав окислов. В плавку поступают либо медная руда, либо обожженные концентраты медных руд. Обжиг концентратов осуществляется с целью снижения содержания серы до оптимальных значений.
Жидкий штейн продувают в конвертерах воздухом для окисления сернистого железа, перевода железа в шлак и выделения черновой меди.
Черновую медь далее подвергают рафинированию – очистке от примесей.
Подготовка руд к плавке.
Большинство медных руд обогащают способом флотации. В результате получают медный концентрат, содержащий 8-35% Cu, 40-50% S, 30-35% Fe и пустую породу, главным образом составляющими которой являются SiO 2 , Al2 O3 и CaO.
Концентраты обычно обжигают в окислительной среде с тем, чтобы удалить около 50% серы и получить обожженный концентрат с содержанием серы, необходимым для получения при плавке достаточно богатого штейна.
Нарушение обмена магния, меди, железа
... нарушения его всасывания в кишечнике (обширная резекция тонкой кишки, хронический энтерит, конкурентная абсорбция цинка и меди, недостаток аскорбиновой кислоты, способствующей переводу железа ... поврежденных гепатоцитов. Развитие внутрисосудистого гемолиза обусловлено ингибированием медью ферментных систем эритроцитов. Генетические дефекты обмена меди у животных сходны с таковыми у человека ...
Обжиг обеспечивает хорошее смешение всех компонентов шихты и нагрев ее до 550-600 0 С и, в конечном итоге, снижение расхода топлива в отражательной печи в два раза. Однако при переплавке обожженной шихты несколько возрастают потери меди в шлаке и унос пыли. Поэтому обычно богатые медные концентраты (25-35% Cu) плавят без обжига, а бедные (8-25% Cu) подвергают обжигу.
Температура обжига концентратов применяют многоподовые печи с механическим перегреванием. Такие печи работают непрерывно.
Выплавка медного штейна
Медный штейн, состоящий в основном из сульфидов меди и железа (Cu 2 S+FeS=80-90%) и других сульфидов, а также окислов железа, кремния, алюминия и кальция, выплавляют в печах различного типа.
Комплексные руды, содержащие золото, серебро, селен и теллур, целесообразно обогащать так, чтобы в концентрат была переведена не только медь, но и эти металлы. Концентрат переплавляют в штейн в отражательных или электрических печах.
Сернистые, чисто медные руды целесообразно перерабатывать в шахтных печах.
При высоком содержании серы в рудах целесообразно применять так называемый процесс медно-серной плавки в шахтной печи с улавливанием газов и извлечением из них элементарной серы.
В печь загружают медную руду, известняк, кокс и оборотные продукты. Загрузку ведут отдельными порциями сырых материалов и кокса.
В верхних горизонтах шахты создается восстановительная среда, а в нижней части печи – окислительная. Нижние слои шихты плавятся, и она постепенно опускается вниз навстречу потоку горячих газов. Температура у фурм достигается 1500 0 С на верху печи она равна примерно 450 0 С.
Столь высокая температура отходящих газов необходима для того, чтобы обеспечить возможность из очистки от пыли до начала конденсации паров серы.
В нижней части печи, главным образом у фурм, протекают следующие основные процессы:
а) Сжигание углерода кокса
C + O 2 = CO2
2FeS + 3O 2 = 2 FeO + 2SO2
в) Образование силиката железа
2 FeO + SiO 2 = (FeO)2 × SiO2
Газы, содержащие CO 2 , SO2 , избыток кислорода и азот, проходят вверх через столб шихты. На этом пути газов происходит теплообмен между шихтой и ними, а также взаимодействие CO2 с углеродом шихты. При высоких температурах CO2 и SO2 восстанавливаются углеродом кокса и при этом образуется окись углерода, сероуглерод и сероокись углерода:
CO 2 + C = 2CO
2SO 2 + 5C = 4CO + CS2
SO 2 + 2C = COS + CO
В верхних горизонтах печи пирит разлагается по реакции:
FeS 2 = Fe + S2
При температуре около 1000 0 С плавятся наиболее легкоплавкие эвтектики из FeS и Cu2 S, в результате чего образуется пористая масса.
В порах этой массы расплавленный поток сульфидов встречается с восходящим потоком горячих газов и при этом протекают химические реакции, важнейшие из которых указаны ниже:
а) образование сульфида меди из закиси меди
2Cu 2 O + 2FeS + SiO2 = (FeO)2 × SiO2 + 2Cu2 S;
б) образование силикатов из окислов железа
3Fe 2 O3 + FeS + 3,5SiO2 = 3,5(2FeO × SiO2 ) + SO2 ;
3Fe 3 O4 + FeS + 5SiO2 = 5(2FeO × SiO2 ) + SO2 ;
в) разложение CaCO 3 и образование силиката извести
CaCO 3 + SiO2 = CaO × SiO2 + CO2 ;
г) восстановление сернистого газа до элементарной серы
SO 2 + C = CO2 + ½ S2
В результате плавки получаются штейн, содержащий 8-15% Cu, шлак состоящий в основном из силикатов железа и извести, колошниковый газ, содержащий S 2 , COS, H2 S, и CO2 . Из газа сначала осажают пыль, затем из него извлекают серу (до 80% S)
Чтобы повысить содержание меди в штейне, его подвергают сократительной плавке. Плавку осуществляют в таких же шахтных печах. Штейн загружают кусками размером 30-100 мм вместе с кварцевым флюсом, известняком и коксом. Расход кокса составляет 7-8% от массы шихты. В результате получают обогащенный медью штейн (25-40% Cu) и шлак (0,4-0,8% Cu).
Температура плавления переплавки концентратов, как уже упоминалось, применяют отражательные и электрические печи. Иногда обжиговые печи располагают непосредственно над площадкой отражательных печей с тем, чтобы не охлаждать обожженные концентраты и использовать их тепло.
По мере нагревания шихты в печи протекают следующие реакции восстановления окиси меди и высших оксидов железа:
6CuO + FeS = 3Cu 2 O + SO2 + FeO;
FeS + 3Fe 3 O4 + 5SiO2 = 5(2FeO × SiO2 ) + SO2
В результате реакции образующейся закиси меди Cu 2 O с FeS получается Cu2 S:
Cu 2 O + FeS = Cu2 S + FeO
Сульфиды меди и железа, сплавляясь между собой, образуют первичный штейн, а расплавленные силикаты железа, стекая по поверхности откосов, растворяют другие оксиды и образуют шлак.
Благородные металлы (золото и серебро) плохо растворяются в шлаке и практически почти полностью переходят в штейн.
Штейн отражательной плавки на 80-90% (по массе) состоит из сульфидов меди и железа. Штейн содержит, %: 15-55 меди; 15-50 железа; 20-30 серы; 0,5-1,5 SiO 2 ; 0,5-3,0 Al2 O3 ; 0.5-2.0 (CaO + MgO); около 2% Zn и небольшое количество золота и серебра. Шлак состоит в основном из SiO2 , FeO, CaO, Al2 O3 и содержит 0,1-0,5 % меди. Извлечение меди и благородных металлов в штейн достигает 96-99 %.
Конвертирование медного штейна
В 1866 г. русский инженер Г. С. Семенников предложил применить конвертер типа бессемеровского для продувки штейна. Продувка штейна снизу воздухом обеспечила получение лишь полусернистой меди (около 79% меди) – так называемого белого штейна. Дальнейшая продувка приводила к затвердеванию меди. В 1880 г. русский инженер предложил конвертер для продувки штейна с боковым дутьем, что и позволило получить черновую медь в конвертерах.
Конвертер делают длиной 6-10, с наружным диаметром 3-4 м. Производительность за одну операцию составляет 80-100 т. Футеруют конвертер магнезитовым кирпичом. Заливку расплавленного штейна и слив продуктов осуществляют через горловину конвертера, расположенной в средней части его корпуса. Через ту же горловину удаляют газы. Фурмы для вдувания воздуха расположены по образующей поверхности конвертера. Число фурм обычно составляет 46-52, а диаметр фурмы – 50мм. Расход воздуха достигает 800 м 2 /мин. В конвертер заливают штейн и подают кварцевый флюс, содержащий 70-80% SiO2 , и обычно некоторое количество золота. Его подают во время плавки, пользуясь пневматической загрузкой через круглое отверстие в торцевой стенке конвертеров, или же загружают через горловину конвертера.
Процесс можно разделить на два периода. Первый период (окисление сульфида железа с получением белого штейна) длится около 6-024 часов в зависимости от содержания меди в штейне. Загрузку кварцевого флюса начинают с начала продувки. По мере накопления шлака его частично удаляют и заливают в конвертер новую порцию исходного штейна, поддерживая определенный уровень штейна в конвертере.
В первом периоде протекают следующие реакции окисления сульфидов:
2FeS + 3O 2 = 2FeO + 2SO2 + 930360 Дж
2Cu 2 S + 3O2 = 2Cu2 O + 2SO2 + 765600 Дж
Пока существует FeS, закись меди не устойчива и превращается в сульфид:
Cu 2 O + FeS = Cu2 S + FeO
Закись железа шлакуется добавляемым в конвертер кварцевым флюсом:
2FeO + SiO 2 = (FeO) × SiO2
При недостатке SiO 2 закись железа окисляется до магнетита:
6FeO + O 2 = 2Fe3 O4 , который переходит в шлак.
Температура заливаемого штейна в результате протекания этих экзотермических реакций повышается с 1100–1200 до 1250-1350 0 С . Более высокая температура нежелательна, и поэтому при продувке бедных штейнов, содержащих много FeS, добавляют охладители – твердый штейн, сплески меди.
Из предыдущего следует, что в конвертере остается главным образом так называемый белый штейн, состоящий из сульфидов меди, а шлак сливается в процессе плавки. Он состоит в основном из различных оксидов железа (магнетита, закиси железа) и кремнезема, а также небольших количеств глинозема, окиси кальция и окиси магния. При этом, как следует из вышесказанного, содержание магнетита в шлаке определяется содержанием магнетита в шлаке определяется содержанием кремнезема. В шлаке остается 1,8-3,0% меди. Для ее извлечения шлак в жидком виде направляют в отражательную печь или в горн шахтной печи.
Во втором периоде, называемом реакционным, продолжительность которого составляет 2-3 часа, из белого штейна образуется черновая медь. В этот период окисляется сульфид меди и по обменной реакции выделяется медь:
2Cu 2 S + 3O2 = 2Cu2 O + 2SO2
Cu 2 S + 2Cu2 O = 6Cu + O2
Таким образом, в результате продувки получают черновую медь, содержащая 98,4-99,4% — меди, 0,01-0,04% железа, 0,02-0,1% серы, и небольшое количество никеля, олова, мышьяка, серебра, золота и конвертерный шлак, содержащий 22-30% SiO 2 , 47-70% FeO, около 3% Al2 O3 и 1.5-2.5% меди.
Рафинирование меди
Для получения меди необходимо чистоты черновую медь подвергают огневому и электролитическому рафинированию, и при этом, помимо удаления вредных примесей, можно извлечь также благородные металлы. Огневое рафинирование черновой меди проводят в печах, напоминающие отражательные печи, используемые для выплавки штейна из медных концентратов. Электролиз ведут в ваннах, футурованных внутри свинцом или винипластом.
ЗАКЛЮЧЕНИЕ
Медь имеет широкое применение. Так, например, чистая медь используется электротехнической промышленности.
Важное значение имеют сплавы меди: латунь (сплав меди с цинком), бронза (сплав меди с оловом), алюминиевая бронза (сплав меди с алюминием), мельхиор (сплав меди с железом, никелем и марганцем) и др.
Соли меди используется в сельском хозяйстве для борьбы с вредителями, в качестве микроудобрений, а также в качестве катализаторов в химическом синтезе.
СПИСОК ЛИТЕРАТУРЫ
[Электронный ресурс]//URL: https://drprom.ru/referat/proizvodstvo-medi/
1. Архипов В. В. Технология металлов и других конструкционных материалов.
М.: «Высшая школа», — 1968
2. Воскобойников В. Г. Общая металлургия. М.: — Металлургия, — 1985
3. Технология конструкционных материалов. /под ред. Дальского А. М. – М.: «Машиностроение», — 1985
ПРИЛОЖЕНИЕ
СХЕМА 1
ПОДГОТОВКА РУД К ПЛАВКЕ
(ОБОГАЩЕНИЕ, ОБЖИГ)
ПЛАВКА НА ШТЕЙН
ШЛАК ШТЕЙН
В ОТВАЛ
КОНВЕРТИРОВАНИЕ ШТЕЙНА
( ПРОДУВКА ВОЗДУХОМ)
ЧЕРНОВАЯ МЕДЬКОНВЕРТЕРНЫЙ
ШЛАК
РАФИНИРОВАНИЕ
ОТХОДЫ МЕДЬ
ПЕРЕРАБОТКА ДЛЯ ИЗВЛЕЧЕНИЯ
Ag, Au, Te и др.
СХЕМА 2
ПЕРВЫЙ ПЕРИОД
2 FeS + 3O 2 = 2FeO + 2SO2 + 930360
2CuS + 3O 2 = 2Cu2 O + 2SO2 + 765600
Cu 2 O + FeS = Cu2 S + FeO
2FeO + SiO 2 = (FeO)2
6FeO + O 2 = 2Fe3 O4
ВТОРОЙ ПЕРИОД
2Cu 2 S + 3O2 = 2Cu2 O + 2SO2
Cu 2 S + 2Cu2 O = 6Cu + SO2