«Фотоэлементы и их применение» (11 класс)

Содержание скрыть

Среди разнообразных явлений, в которых проявляется воздействие света на вещество, важное место занимает фотоэлектрический эффект, то есть испускание электронов веществом под действием света. Анализ этого явления привел к представлению о световых квантах и сыграл чрезвычайно важную роль в развитии современных теоретических представлений. Вместе с тем фотоэлектрический эффект используется в фотоэлементах получивших исключительно широкое применение в разнообразнейших областях науки и техники и обещающих еще более богатые перспективы. [1]

В системах автоматизации, сигнализации, наблюдения и контроля применяются датчики всевозможных типов: герконовые, резистивные, емкостные, индуктивные, термические, сенсорные, контактные, микроволновые и многие другие, однако чаще всего используются датчики, включающие в себя фотоэлементы. Открытие фотоэффекта имело очень большое значение для более глубокого понимания природы света. Но ценность науки состоит не только в том, что она выясняет сложное и многообразное строение окружающего нас мира, но и в том, что она дает нам в руки средства, используя которые можно совершенствовать производство, улучшать

условия жизни человека.

Интерес в подготовке данного исследовательского проекта вызван желанием узнать,что такое фотоэффект и какое практическое применение нашел фотоэффект в технике.

Цель: изучить явление фотоэффекта и его применение.

Задачи:

  1. изучить теоретический материал фотоэффекта;

  2. изучить виды фотоэлементов;

  3. обобщить применение фотоэлементов

Гипотеза: на основе полученных знаний можно объяснить принцип действия «видящих» автоматов, солнечных электростанций.

Методы исследования: сбор информации, обобщение.

1. История открытия фотоэффекта

В 1887 г. немецкий физик Генрих Герц экспериментировал с разрядником для излучения электромагнитных волн — парой металлических шаров; при приложении разности потенциалов между ними проскакивала искра. Когда же он освещал один из шаров ультрафиолетовыми лучами, разряд усиливался. Таким образом, был обнаружен внешний фотоэффект.

В 1888 г. Вильгельм Гальвакс установил, что облучённая ультрафиолетовым светом металлическая пластинка заряжается положительно. Так произошло второе открытие фотоэффекта. Третьим, не зная об опытах Герца и Гальвакса, его наблюдал в том же году итальянец Аугусто Риги. Он выяснил, что фотоэффект возможен и в металлах, и в диэлектриках. Александр Григорьевич Столетов был четвёртым учёным, независимо от других открывшим фотоэффект. Он два года исследовал новое явление и вывел его основные закономерности. Оказалось, что сила фототока, во-первых, прямо пропорциональна интенсивности падающего света, а во-вторых, при фиксированной интенсивности облучения сначала растёт по мере повышения разности потенциалов, но, достигнув определённого значения (ток насыщения), уже не увеличивается.

30 стр., 14972 слов

Разработка лабораторного стенда для исследования фотоэффекта

... программы. Реализовать описанные требования и было целью дипломной работы. Данные средства реализации программы являются перспективными и ... компоненты управления данными, методики и особенности их применения. Большое внимание уделено средствам доступа к локальным ... большими. После анализа поставленной задачи стало необходимо изучить предметную область, в которой решалась задача создания ...

В 1899 г. немец Филипп Ленард и англичанин Джозеф Томсон доказали, что падающий на металлическую поверхность свет выбивает из неё электроны, движение которых и приводит к появлению фототока. Однако понять природу фотоэффекта с помощью классической электродинамики так и не удалось. Необъяснимым оставалось, почему фототок возникал лишь тогда, когда частота падающего света превышала строго определённую для каждого металла величину.

Только в 1905 г. Эйнштейн превратил эту загадку в совершенно прозрачную картину. Он предположил, что электромагнитное излучение не просто испускается порциями — оно и распространяется в пространстве, и поглощается веществом тоже в виде порций — световых квантов (фотонов).

Поэтому для возникновения фотоэффекта важна отнюдь не интенсивность падающего светового пучка. Главное, хватает ли отдельному световому кванту энергии, чтобы выбить электрон из вещества. Минимальную энергию, необходимую для этого, называют работой выхода А. В итоге Эйнштейн вывел уравнение фотоэффекта.

Ясно, что фотоэффект может вызывать только световая волна достаточно высокой частоты, а сила фототока пропорциональна интенсивности поглощённого света, то есть числу фотонов, способных выбить электроны из вещества. В 1907 г. Эйнштейн сделал ещё одно уточнение квантовой гипотезы. Почему тело излучает свет только порциями? А потому, отвечал Эйнштейн, что атомы имеют лишь дискретный набор значений энергии. Таким образом, теория излучения и поглощения приняла законченный вид.

В 1922 г. американец Артур Комптон обнаружил, что длинна волны рентгеновского излучения изменяется при рассеянии на электронах вещества. Но, по классической электродинамике, длина световой волны при рассеянии меняться не может! Тогда Комптон выполнил расчёт, предположив, что на электронах рассеиваются не волны, а частицы (фотоны).

Результат совпал с экспериментальным. Это стало прямым доказательством реальности существования фотонов.

2. Фотоэффект и его законы

Фотоэлектрическим эффектом (фотоэффектом) называют группу явлений, возникающих при взаимодействии света с веществом и заключающихся либо в эмиссии электронов (внешний фотоэффект), либо в изменении электропроводимости вещества или возникновении электродвижущей силы (внутренний фотоэффект).

Выделяют три основных вида фотоэффектов: внутренний, внешний и вентильный.

Внешний фотоэффект наблюдается в газах на отдельных атомах и молекулах (фотоионизация) и в конденсированных средах.

12 стр., 5637 слов

Шкала электромагнитных волн

... мегагерц (МГц) - миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле ... токов не слишком высокой частоты. Иными словами, для длинных волн лес равнина ведут себя как металл. Поэтому длинные волны удерживаются всей земной поверхностью и способна обогнуть земной ...

Внешний фотоэффект в металле можно представить состоящим из трех процессов: поглощение фотона электроном проводимости, в результате чего увеличивается кинетическая энергия электрона; движение электрона к поверхности тела; выход электрона из металла. Этот процесс энергетически описывают уравнением Эйнштейна (см. ниже).

Если, освещая металл монохроматическим светом, уменьшать частоту излучения (увеличивать длину волны), то, начиная с некоторого ее значения, называемого красной границей; фотоэффект прекратится.

Экспериментальные исследования показали, что термин «красная граница» не означает, что граница фотоэффекта обязательно попадает в область красного цвета.

Внутренний фотоэффект наблюдается при освещении полупроводников и диэлектриков, если энергия фотона достаточна для, переброса электрона из валентной зоны в зону проводимости,

В примесных полупроводниках фотоэффект обнаруживается также в том случае, если энергия электрона достаточна для переброса электронов в зону проводимости с донорных примесных уровней или из валентной зоны на акцепторные примесные уровни. Так в полупроводниках и диэлектриках возникает фотоэлектропроводимость.

Интересная разновидность внутреннего фотоэффекта наблюдается в контакте электронного и дырочного полупроводников. В этом случае под действием света возникают электроны и дыр

ки, которые разделяются электрическим полем р-n-перехода; электроны перемещаются в полупроводник типа n, а дырки -в полупроводник типа р, При этом между дырочным и электронным полупроводниками изменяется контактная разность потенциалов по сравнению с равновесной, т. е. возникает фотоэлектродвижущая сила. Такую форму внутреннего фотоэффекта называют вентильным фотоэффектом.

Он может быть использован для непосредственного преобразования энергии электромагнитного излучения в энергию электрического тока.

Законы Фотоэффекта:

  • 1-ый закон фотоэффекта: количество электронов, вырываемых светом с поверхности металла за 1с, прямо пропорционально интенсивности света.

  • 2-ой закон фотоэффект: максимальная кинетическая энергия вырываемых светом электронов линейно возрастёт с частотой света и не зависит от его интенсивности.

  • 3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота света v0 (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если v < v0 , то фотоэффект уже не происходит.

Первый закон объяснён с позиции электромагнитной теории света: чем больше интенсивность световой волны, тем большему количеству электронов будет передана достаточная для вылета из металла энергия. Другие законы фотоэффекта противоречат этой теории.

Теоретическое объяснение этих законов было дано в 1905 Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hv каждый (h-постоянная Планка).

14 стр., 6650 слов

Карбонилы и хлориды металлов VIII В группы, их свойства и применение

... его отличие от у, или прямого, связывания, при котором предоставляет электроны только лиганд. Обратное связывание в карбонилах металлов относится к типу d-р (связь d-р образуют как р-, ... формулы моно- и полиядерных карбонилов металлов Мх(СО)у: ; ; где G - атомный номер ближайшего инертного газа; т - атомный номер металла. [1] Из анализа диаграммы энергий молекулярных орбиталей для ...

При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл:

hv=A+mv 2 /2 , где mv 2 /2 –максимальная кинетическая энергия, которую может иметь электрон при вылете из металла. Она может быть определена:

mv 2 /2 = eU 3 . U 3 — задерживающее напряжение.

В теории Эйнштейна законы фотоэффекта объясняются следующим образом: интенсивность света пропорциональна числу фотонов в световом пучке и поэтому определяет число электронов, вырванных из металла.

Второй закон следует из уравнения: mv 2 /2=hv-A.

Из этого же уравнения следует, что фотоэффект возможен лишь в том случае, когда энергия поглощённого фотона превышает работу выхода электрона из металла. Т. е. частота света при этом должна превышать некоторое определённое для каждого вещества значение, равное A>h. Эта минимальная частота определяет красную границу фотоэффекта:

v o =A/h y o =c/v o =ch/A.

При меньшей частоте света энергии фотона не хватает для совершения электроном работы выхода, и поэтому фотоэффект отсутствует.

Квантовая теория Эйнштейна позволила объяснить и ещё одну закономерность, установленную Столетовым. В 1888 Столетов заметил, что фототок появляется почти одновременно с освещением катода фотоэлемента. По классической волновой теории электрону в поле световой электромагнитной волны требуется время для накопления необходимой для вылета энергии, и поэтому фотоэффект должен протекать с запаздыванием по крайне мере на несколько секунд. По квантовой теории же, когда фотон поглощается электроном, то вся энергия фотона переходит к электрону и никакого времени для накопления энергии не требуется.

С изобретением лазеров появилась возможность экспериментировать с очень интенсивными пучками света. Применяя сверхкороткие импульсы лазерного излучения, удалось наблюдать многофотонные процессы, когда электрон, прежде чем покинуть катод, претерпевал столкновение не с одним, а с несколькими фотонами. В этом случае уравнение фотоэффекта записывается: Nhv=A+mv 2 /2, чему соответствует красная граница.

3. Фотоэлементы

Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Подразделяются на вакуумные и полупроводниковые фотоэлементы. Действие прибора основано на фотоэлектронной эмиссии или внутреннем фотоэффекте

16 стр., 7566 слов

Цветные металлы: классификация, области применения. Металлические ...

... включает добычу, обогащение руд цветных металлов и выплавку цветных металлов и их сплавов. Различают металлургию легких металлов и металлургию тяжелых металлов. Применение цветных металлов В современной технике объем применения цветных металлов и сплавов на ...

3.1 Вакуумный фотоэлемент

Вакуумный фотоэлемент (Рис1.1), основанный на внешнем фотоэффекте, состоит из источника электронов — фотокатода К, на который попадает свет, и анода А. Вся система заключена в стеклянный баллон, из которого откачан воздух. Фотокатод, представляющий собой фоточувствительный слой, может быть непосредственно нанесен на часть внутренней поверхности баллона. На рисунке 1 дана схема включения фотокатода в цепь.

 вакуумный фотоэлемент 1  вакуумный фотоэлемент 2

Рис.1. Рис. 1.1

Основной параметр фотоэлемента — его чувствительность, выражаемая отношением силы фототока к соответствующему световому потоку. Эта величина в вакуумных фотоэлементах достигает значения порядка 100 мкА/лм.

Для увеличения силы фототока применяют также газонаполненные фотоэлементы, в которых возникает несамостоятельный темный разряд в инертном газе, и вторичную электронную эмиссию — испускание электронов, происходящее в результате бомбардировки поверхности металла пучком первичных электронов. Последнее находит применение в фотоэлектронных умножителях (ФЭУ).

Схема ФЭУ приведена на рис. 2. Падающие на фотокатод К фотоны эмиттируют электроны, которые фокусируются на первом электроде (диноде) Э1. В результате вторичной электронной эмиссии с этого динода вылетает больше электронов, чем падает на него, т. е. происходит как бы умножение электронов. Умножаясь на следующих динодах, электроны в итоге образуют усиленный в сотни тысяч раз ток по сравнению с первичным фототоком.

 вакуумный фотоэлемент 3

Рис. 2.

ФЭУ применяют главным образом для измерения малых лучистых потоков, в частности ими регистрируют сверхслабую биолюминесценцию, что важно при некоторых биофизических исследованиях.

На внешнем фотоэффекте основана работа электронно-оптического преобразователя (ЭОП), предназначенного для преобразования изображения из одной области спектра в другую, а также для усиления яркости изображений. Схема простейшего ЭОП приведена на рис. 4.

Световое изображение объекта 1, проецированное на полупрозрачный фотокатод К, преобразуется в электронное изображение 2. Ускоренные и сфокусированные электрическим полем электродов Э электроны попадают на люминесцентный экран Е. Здесь электронное изображение благодаря катодолюминесценции вновь преобразуется в световое 3.  вакуумный фотоэлемент 4

Рис. 4.

В медицине ЭОП применяют для усиления яркости рентгеновского изображения, это позволяет значительно уменьшить дозу облучения человека.

Если сигнал с ЭОП подать в виде развертки на телевизионную систему, то на экране телевизора можно получить «тепловое» изображение предметов. Части тела, имеющие разные температуры, различаются на экране либо цветом при цветном изображении, либо светом, если изображение черно-белое. Такая техническая система, называемая тепловизором, используется в термографии.

12 стр., 5937 слов

Лазеры и их применение в медицине (4)

Лазеры находят широкое применение в военной технике, в технологии обработки материалов, в медицине, оптических системах навигации, связи и локации, в прецизионных интерференционных экспериментах, в химии, просто в быту и т. ... поглощения и излучения атомами квантов света. Атом может находиться в различных энергетических состояниях с энергиями E 1 , E2 и т. д. В теории Бора эти состояния называются ...

3.2 Полупроводниковые фотоэлементы

3.2.1 Солнечные батареи

Солнечная батарея (вентильные фотоэлементы) — это полупроводниковые устройства, прямо преобразующих солнечную энергию в постоянный электрический ток.

Вентильные фотоэлементы имеют преимущество перед вакуумными, так как работают без источника тока. Один из таких фотоэлементов — медно-закисный — представлен на схеме рис. 5.

 солнечные батареи 1  солнечные батареи 2

Рис. 5.

Медная пластинка, служащая одним из электродов, покрывается тонким слоем закиси меди Сu2О (полупроводник).

На закись меди наносится прозрачный слой металла (например, золото Аu), который служит вторым электродом. Если фотоэлемент осветить через второй электрод, то между электродами возникнет фото-э.д.с., а при замыкании электродов, в электрической цепи пойдет ток, зависящий от светового потока.

Чувствительность вентильных фотоэлементов достигает нескольких тысяч микроампер на люмен. На основе высокоэффективных вентильных фотоэлементов с к.п.д., равным 15% для солнечного излучения, создают специальные солнечные батареи для питания бортовой аппаратуры спутников и космических кораблей.

Зависимость силы фототока от освещенности (светового потока) позволяет использовать фотоэлементы как люксметры, что находит применение в санитарно-гигиенической практике и при фотографировании для определения экспозиции (в экспонометрах).

Некоторые вентильные фотоэлементы (сернисто-таллиевый, германиевый и др.) чувствительны к инфракрасному излучению, их применяют для обнаружения нагретых невидимых тел, т. е. как бы расширяют возможности зрения. Другие фотоэлементы (селеновые) имеют спектральную чувствительность, близкую к человеческому глазу, это открывает возможности использования их в автоматических системах и приборах вместо глаза как объективных приемников видимого диапазона света.

Достоинства

1. Общедоступность и неисчерпаемость источника.

2. Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки

1. Зависимость от погоды и времени суток.

2. Как следствие необходимость аккумуляции энергии.

3. Высокая стоимость конструкции.

4. Необходимость постоянной очистки отражающей поверхности от пыли.

5. Нагрев атмосферы над электростанцией. [10], Применение солнечных батареек:

  1. Портативная электроника

  2. Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т.п.

    22 стр., 10899 слов

    Лазеры и их применение в медицине (3)

    ... лазеры. В зависимости от типа лазера энергия для создания инверсной населенности сообщается разными способами: возбуждение очень интенсивным светом — «оптическая накачка», электрическим газовым разрядом, в полупроводниковых лазерах ... операционном поле» являются идеалом для хирургов любого профиля. 1 ЛАЗЕРЫ И ИХ ПРИМЕНЕНИЕ В МЕДИЦИНЕ Несмотря на общую природу световых и радиоволн, многие ...

  3. Электромобили (Для их подзарядки)

  4. Авиация

  5. Одним из проектов по созданию самолета, использующего исключительно энергию солнца, является Solar Impulse.

  6. Энергообеспечение зданий

  7. Солнечные батареи крупного размера, как и солнечные коллекторы, широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.

  8. Дорожное покрытие

В 2014 году в Нидерландах открылась первая в мире велодорожка из солнечных батарей. В 2016 году министр экологии и энергетики Франции Сеголян Руаяль заявила о планах построить 1000 км автодорог со встроенными ударо- и термостойкими солнечными панелями. Предполагается что 1 км такой дороги сможет обеспечивать электроэнергетические потребности 5000 людей (без учета отопления).

  1. Использование в космосе

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

11. Использование в медицине

Южнокорейские ученые разработали подкожную солнечную батарею. Миниатюрный источник энергии может быть вживлен под кожу человека с целью бесперебойного обеспечения работы приборов, имплантированных в тело, например, кардиостимулятора. Такая батарея в 15 раз тоньше волоса и может заряжаться, если даже на кожу наносится солнцезащитное средство.

3.2.2 Фоторезистор

Фоторезистор — светочувствительный элемент, чье сопротивление уменьшается при интенсивном освещении и увеличивается при его отсутствии. На основании материалов, используемых при производстве, фоторезисторы могут быть разделены на две группы: с внутренним и внешним фотоэффектом. В производстве фоторезисторов с внутренним фотоэффектом используют нелегированные материалы, такие как кремний или германий.

Фотоны, которые попадают на устройство, заставляют электроны перемещаться из валентной зоны в зону проводимости. В результате этого процесса появляется большое количество свободных электронов в материале, тем самым улучшается электропроводность и, следовательно, уменьшается сопротивление. Внутренний фотоэффект присущ только полупроводникам и диэлектрикам.

Фоторезисторы с внешним фотоэффектом производятся из материалов, с добавлением примеси, называемой легирующая добавка. Легирующая добавка создает новую энергетическую зону поверх существующей валентной зоной, заселенную электронами. Этим электронам требуется меньше энергии, чтобы совершить переход в зону проводимости благодаря меньшей энергетической щели. Результат этого – фоторезистор чувствителен к различным длинам волн света.

11 стр., 5236 слов

Проектирование и испытание фототранзистора

Новые направления чаще всего возникают как слияние и интеграция ряда уже известных достижений оптоэлектроники и традиционной микроэлектроники: таковы интегральная оптика и волоконно-оптические линии связи; оптические запоминающие устройства, опирающиеся на лазерную технику и голографию; оптические транспаранты, использующие успехи фотоэлектроники и нелинейной оптики; плоские безвакуумные средства ...

Несмотря на все это, оба типа демонстрируют уменьшение сопротивления при освещении. Чем выше интенсивность света, тем больше падает сопротивление. Следовательно, сопротивлением фоторезистора является обратная, нелинейная функция интенсивности света.

Фоторезистор очень чувствителен к малейшему изменению света. Его устанавливают в фокус телескопа и измеряют температуру звёзд. Он чувствителен к инфракрасным лучам и используется в инфракрасной технике. Фоторезисторы чаще всего используются в качестве датчиков света, когда требуется определить наличие или отсутствие света или зафиксировать интенсивность света. Примерами являются автоматы включения уличного освещения и фотоэкспонометры  фоторезистор 1

 фоторезистор 2

 фоторезистор 3

Фоторезистор используется в фотореле. Под действием света увеличивается сила тока в фоторезисторе. Срабатывает электромагнитное реле, которое включает уличное освещение, бакены, различные схемы автоматики и телемеханики. Но фотореле инерционное. Срабатывает через доли секунды, т.к. инерционен фоторезистор.

3.2.3 Фотодиоды

Фотодиод — это полупроводниковый диод, который обладает свойством односторонней проводимости при воздействия на него оптического излучения. Фотодиод представляет собой полупроводниковый кристалл, обычно с электронно — дырочным переходом. Он снабжен двумя металлическими выводами и вмонтированный в пластмассовый или же в металлический корпус.

Достоинства фотодиодов

  • стабильность фототока;

  • линейный характер зависимости тока от освещённости;

  • низкое входное сопротивление при прямом включении;

  • нетребовательность к температурному режиму

Достоинства фотодиодов 1

Применение фотодиодов.

  1. Оптоэлектронные интегральные микросхемы.

  2. Полупроводники обеспечивают оптическую связь, что гарантирует эффективную гальваноразвязку силовых и руководящих цепей при поддержании функциональной связи/

  3. Многоэлементные фотоприемники – сканисторы, фоточувствительные аппараты, фотодиодные матрицы.

    25 стр., 12467 слов

    Дипломная работа абаканское железорудное месторождение

    ... 29.67 % общемирового производства), разрабатывающая уникальное железорудное месторождение в так называемом «железном четырехугольнике». ... Теоретическая значимость работы. Сформированные в дипломной работе положения и ... также такие крупные месторождения железных руд, как Абаканское, Тейское, Ирбинское, Краснокаменское ... разработки месторождений. Основным препятствием для его повсеместного применения ...

  4. Оптоэлектрический элемент способен воспринимать не только яркостную характеристику объекта и ее изменение во времени, но и создавать полный визуальный образ.

  5. Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.

3.2.3 Фототранзистор

Фототранзистор представляет собой твердотельное полупроводниковое устройство с внутренним усилением. Фототранзисторы способны реагировать не только на обычное освещение, но и на инфракрасное и ультрафиолетовое излучение. Фототранзисторы более чувствительные и создают больший ток по сравнению с фотодиодами.

Обычный транзистор состоит из коллектора, эмиттера и базы. В работе фототранзистора, как правило, вывод базы остается отключенным, так как свет генерирует электрический сигнал, позволяющий току протекать через фототранзистор.

При отключенной базе, коллекторный переход фототранзистора смещен в обратном, а эмиттерный переход — в прямом направлении. Фототранзистор остается неактивным до тех пор, пока свет не попадает на базу. Свет активирует фототранзистор, образуя электроны и дырки проводимости — носители заряда, в результате чего через коллектор — эмиттер протекает электрический ток.

Комбинируя структуры, можно получить фототранзистор. Световой луч управляет его работой.

Комбинируя структуры 1 Комбинируя структуры 2

Преимущества

  • Выдают ток больше, чем фотодиоды.

  • Способны создать мгновенную высокую величину тока выхода.

  • Основное достоинство – способность создания повышенного напряжения, в отличие от фоторезисторов.

  • Невысокая стоимость.

Недостатки

  • Многие виды фототранзисторов изготавливают из силикона, поэтому они не могут работать с напряжением более 1 кВ.

  • Такие светочувствительные полупроводники имеют большую зависимость от перепадов напряжения питания в электрической цепи. В таких режимах фотодиод ведет себя гораздо надежнее.

  • Фототранзисторы не сочетаются с работой в лампах, по причине малой скорости носителей заряда.

Недостатки 1

Применение

  1. Системы охраны (чаще применяются инфракрасные ф-транзисторы).

  2. Фотореле.

  3. Системы расчета данных и датчики уровней.

  4. Автоматические системы коммутации осветительных приборов (также применяются инфракрасные фототранзисторы).

  5. Компьютерные управляющие логические системы.

  6. Кодеры.

4. Применение фотоэлементов в

Фотоэлементы нашли широкое применение в самых разных сферах деятельности человека. Фотоэлементы на практике применяются по общей схеме. На входе может быть любой элемент: фоторезистор, фотодиод, фототранзистор. Они реагируют на световой поток. Сигнал усиливается и подается в исполнительную цепь. По этой схеме фотоэлементы могут управлять работой двигателей, станков, целых систем. Они прочно вошли в нашу жизнь.  применение фотоэлементов в 1

  1. Фотореле пропускает нас в метро. Электронный глаз следит за движением нити в текстильном производстве. Миниатюрные фотоэлементы зарегистрируют ее обрыв и остановят станок.

  2. Их используют для измерения площади заготовок сложной формы. В считанные секунды определяется площадь лекала. Фотореле строго следит за раскроем кожи, ткани, и обеспечивает безопасность работы на прессе.

  3. На станке для плазменной резки металла фотоэлементы также управляют его работой. Они считывают информацию с перфоленты, и задают режимы работы станка.

  4. В типографии они считают бумажные листы, следят за их правильной укладкой и резкой. Ведут постоянный контроль за циклом работы станка, обеспечивая безопасность работы резчика бумаги.

  5. На почтамте фотоэлементы позволили автоматизировать трудоемкие операции по обработке писем и сортировки их по адресам. Электронный глаз внимательно следит за тем, чтобы штемпель точно попал на марку. Фотоэлектронная система считывает индекс, обозначенный на конверте, и направляет письмо в нужную ячейку.

  6. В ювелирном производстве фотоэлементы стали контролерами качества обработки драгоценных камней. Фотоэлектронный глаз представляет собой матрицу, состоящую из нескольких тысяч отдельных фотоэлементов.

  7. Звук в кино записывается на звуковую дорожку. Фотоэлемент его расшифровывает, и управляет работой звуковых динамиков. Изображение на фотопленке и в глазу человека возникает благодаря фотоэффекту.

  8. Роботы-автоматы выполняют технологические операции, за которыми не может следить человек. В промышленности робот движется, ориентируясь по белой линии на полу, благодаря системе, оснащенной фотоэлементами.

Прогресс науки и техники в самых разных областях народного хозяйства во многом стал возможен благодаря широкому использованию фотоэлементов.

Заключение

Среди разнообразных явлений, в которых проявляется воздействие света на вещество, важное место занимает фотоэлектрический эффект, то есть испускание электронов веществом под действием света.

Анализ этого явления привел к представлению о световых квантах и сыграл чрезвычайно важную роль в развитии современных теоретических представлений. Вместе с тем фотоэлектрический эффект используется в фотоэлементах получивших исключительно широкое применение в разнообразнейших областях науки и техники и обещающих еще более богатые перспективы.

  1. Гирицкий Е.В. Элементы квантовой механики. — К.: Освита, 1988.

  2. Дягилев Ф.М. Квантовая механика. — М.: Просвещение, 1986. .

  3. Ремизов А.Н. Медицинская биофизика. — М.: Высшая школа, 1987. — С. 487 — 491.

  4. Храмов Ю.А. Физики. Биографический справочник. — М.: Наука, Гл. редакция физико-математической литературы, 2002.

  5. http://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BB%D0%BD%D1%86%D0%B5 – Солнце,

  6. -Фотоэлемент

  7. — Солнечная батарея

  8. http://galspace.spb.ru/index115.html — Солнечная энергия — будущее Земли