2. Ручная разделительная кислородная резка…………………………..
2.1. Ручная разделительная кислородная резка………………………………….
2.2. Поверхностная кислородная резка………………………………………………..
2.3. Техника безопасности при сварке…………………………………………………., Техника безопасности при газопламенной обработке………………….., Заключение………………………………………………………………………………………….., Библиографический список………………………………………………………………….
Ведение
Резкой металлов называют отделение частей (заготовок) от сортового, листового или литого металла. Различают механическую (ножницами, пилами, резцами), ударную (рубка) и термическую резку.
Термической резкой называют обработку металла (вырезку заготовок, строжку, создание отверстий) посредством нагрева. Паз, образующийся между частями металла в результате резки, называют резом. По форме и характеру реза может быть разделительная и поверхностная резка, по шероховатости реза — заготовительная и чистовая. Термическая резка отличается от других видов высокой производительностью при относительно малых затратах энергии и возможностях получения заготовок любого сколь угодно сложного контура при большой толщине металла.
Можно выделить три группы процессов термической резки: окислением, плавлением и плавлением с окислением. При резке окислением металл в зоне резки нагревают до температуры его воспламенения в кислороде, затем сжигают его в струе кислорода, используя образующуюся теплоту для подогрева следующих участков металла. Продукты сгорания выдувают из реза струёй кислорода и газов, образующихся при горении металла. К резке окислением относится газопламенная (кислородная) и кислородно-флюсовая резка. При резке плавлением металл в месте резки нагревают мощным концентрированным источником тепла выше температуры его плавления и выдувают расплавленный металл из реза с помощью силы давления дуговой плазмы, реакции паров металла, электродинамических и других сил, возникающих при действии источника тепла, либо специальной струёй газа. К способам этой группы относятся дуговая, воздушно-дуговая, сжатой дугой (плазменная), лазерная и термогазоструйная.
резка термическая металл кислородная
Способность металла подвергаться кислородной резке называется разрезаемостью. Разрезаемость углеродистых сталей с увеличением содержания углерода ухудшается.
Глава 1. Общие сведения о кислородной сварке
-
-
Сущность процесса сварки
16 стр., 8000 словКислородная резка
... металла. Процесс кислородной резки по своей экономичности превосходит процессы механической обработки. Повышение точности кислородной резки, достигнутое ... поиском газов для сварки и резки велась работа по созданию надежного оборудования. В ... реза жидкие окислы выдуваются, а окружающий его металл остается твердым. За счет теплоты, выделяемой в процессе горения, подогреваются смежные зоны металла, ...
-
Сварку и термическую резку широко используют в народном хозяйстве страны. Это объясняется прежде всего экономией металла. При изготовлении сварных конструкций применяют стыковые соединения, при изготовлении клепаных — нахлесточные. Благодаря этому экономия металла, например, при сварке строительных конструкций (фермы, колонны, балки) составляет около 20%. Сокращение расхода металла снижает стоимость сварных изделий.
Республика Беларусь занимает ведущее место среди крупнейших стран мира по развитию сварочной науки и техники, а по некоторым показателям сварочного производства — первое место.
Наша страна — родина наиболее распространённого вида сварки сталей — дуговой. Ещё в СССР впервые предложили подводную, электрошлаковую, диффузионную сварку, сварку в космосе.
В настоящее время всё больше производится сварных изделий не только из сталей, но и из алюминия, меди, никеля, титана и их сплавов, а также из разнородных материалов, например алюминия и стали.
Одним из способов повышения износостойкости деталей в механизмах, поверхности которых работают на истирание, является наплавка сплавами с особыми свойствами.
Термическая резка во многих случаях полностью заменяет механическую обработку. В настоящее время применяется кислородная резка сплавов железа, титана и некоторых других сплавов. Наряду с кислородной стала выполняться резка металлов низкотемпературной плазмой.
Выпускать продукцию отличного качества, совершенствовать приёмы труда, соблюдать новейшую передовую технологию могут только рабочие, хорошо овладевшие теорией и передовой практикой. Большое значение имеет повышение профессионального мастерства и культурно-технического уровня рабочих.
Сущность процесса сварки.
Сваркой называется проесс получения неразъёмных соединений посредством установления межатомных связей между соединяемыми частями при их нагревании и/или пластическом деформировании.
Процесс сварки, Свариваемость
технологической свариваемостью.
Физическая свариваемость
Сближение частиц металла и создание условий для их взаимодействия осуществляются выбранным способом сварки, а соответствующие физико-химические процессы определяются свойствами соединяемых металлов. Эти свойства характеризуют физическую свариваемость.
однородные
Более сложным является соединение разнородных металлов. Это объясняется их различными физическими и химическими свойствами, например температурой плавления, теплопроводностью, а также различным атомным строением. Свойства разнородных металлов не всегда обеспечивают необходимые физико-химические процессы в зоне сплавления, поэтому эти металлы не обладают физической свариваемостью. Одни металлы, например железо и свинец, не смешиваются при расплавлении и не образуют сварного соединения, другие — железо и медь, железо и никель, никель и медь — хорошо смешиваются при сварке и образуют сварные соединения.
Соединения металлов при сварке достигаются за счёт возникновения атомно-молекулярных связей между элементарными частицами соединяемых деталей. Сближению атомов мешают неровности на поверхностях, загрязнения в виде оксидов, органических плёнок и адсорбированных газов. Поэтому для установления атомно-молекулярных связей между элементарными частицами соединяемых деталей нужны нагрев, нагрев и давление или только давление.
Реферат сварка никеля и его сплавов
... промышленности применяются сплавы никеля с медью и железом типа монель и константан для изготовления катодов. Особенности диффузионной сварки никеля и его сплавов определяются их свой-ствами и составом, в ... частности термодинамической прочностью окисной плёнки, со-противлением ползучести и деформационной способностью металла. ...
шлаковая защита
В зависимости от способов, применяемых для устранения причин, препятствующих получению прочного соединения, все виды сварки (а их около 70) делят на три основные группы: сварка плавлением (сварка в жидком состоянии), сварка плавлением и давлением (сварка в жидко-твёрдом состоянии) и сварка давлением (сварка в твёрдом состоянии).
Все способы дуговой и газовой сварки относятся к сварке плавлением. При сварке плавлением соединение деталей достигается путём расплавления металла свариваемых элементов по кромкам вместе их соприкосновения. При этом расплавленные кромки соединяемых деталей и расплавленный присадочный материал сливаются, образуя общую сварочную ванну. По мере удаления источника нагрева происходит затвердевание — кристаллизация металла сварочной ванны и формирование шва, соединяющего детали в одно целое. Металл шва при всех видах сварки плавления имеет литую структуру.
-
-
Техника кислородной резки
-
Общие сведения., Различают два вида кислородной резки: разделительную и поверхностную.
При разделительной резке образуются сквозные разрезы, а при поверхностной — канавки круглого очертания.
Разделительная резка производится без и со скосом кромок под сварку, а поверхностная бывает либо сплошной, когда обрабатывается вся поверхность заготовки за один проход, либо выборочной с удалением поверхностного слоя металла.
В отличие от сварки кислородная резка на вертикальной плоскости или в потолочном положении не представляет трудностей и может производиться в любом пространственном положении.
В процессе резки металл расплавляется и вытекает из полости реза. Однако железо легко окисляется, а в чистом кислороде горит и превращается в оксиды и шлаки.
К термическому и химическому действию может присоединяться механическое действие струи газа, выталкивающее жидкие и размягчённые продукты из полости реза.
При кислородной резке происходит химическая реакция сгорания железа в кислороде.
Железо и сталь не загораются, как известно в кислороде при низких температурах, поэтому кислород хранят в стальных баллонах. Температура начала горения металла зависти от его химического состава и равна 1000-1200 о С. Температура начала горения повышается с увеличением содержания углерода в металле при одновременном понижении температуры его плавлении. Высококачественная кислородная резка металла возможна лишь в том случае, если он горит в твёрдом состоянии. Если же металл загорается лишь при расплавлении, то в процессе резки он вытекает из полости реза и рез получается широким и неравномерным.
подогревающим
Таким образом, кислородная резка состоит из нескольких процессов: подогрева металла, сжигания металла струёй кислорода, выдувания расплавленного шлака из полости реза. Подогревательное пламя обычно не тушат, и оно горит в течении всего процесса резки, так как теплоты, выделяющейся при сжигании железа в кислороде, недостаточно для возмещения всех потерь теплоты в зоне резки. Если подогревательное пламя потушить, то процесс резки быстро прекращается, металл охлаждается настолько, что кислород перестанет на него действовать, и реакция горения металла в кислороде останавливается.
Сварка. Кислородная резка
... резки металл расплавляется и вытекает из полости реза. Однако железо легко окисляется, а в чистом кислороде ... технические сплавы – стали. Большинство других металлов не поддаются кислородной резке. Разрезаемость металла. Сталь Характеристика разрезаемости. Низкоуглеродистая ... газовой сварки относятся к сварке плавлением. При сварке плавлением соединение деталей достигается путём расплавления металла ...
Условия резки.
Температура воспламенения металла в кислороде должна быть ниже температуры его плавления. Этому требованию соответствуют низкоуглеродистые стали, температура воспламенения которых в кислороде около 1300 о С, а температура плавления около 1500 о С. Увеличение содержания углерода в стали сопровождается повышением температуры воспламенения в кислороде и понижением температуры плавления. Поэтому с ростом содержания углерода кислородная резка сталей ухудшается.
Температура плавления оксидов металлов, образующихся при резке, должна быть ниже температуры плавления самого металла. В противном случае тугоплавкие оксиды не будут выдуваться струёй режущего кислорода, что нарушит нормальный процесс резки. Этому условию не удовлетворяют высокохромистые стали и алюминий. При резке высокохромистых сталей образуются тугоплавкие оксиды с температурой плавления 2000 о С, а при резке алюминия — оксид, температура плавления которого около 2050 о С. Кислородная резка их невозможна без применения специальных флюсов.
Теплоты, которая выделяется при сгорании металла в кислороде, должно быть достаточно для поддержания непрерывного процесса резки. При резке стали около 70% теплоты выделяется в результате сгорания металла в кислороде и только 30% её поступает от подогревающего пламени резака.
Образующиеся при резке шлаки должны быть жидкотекучими и легко выдуваться из места реза.
Теплопроводность металлов и сплавов не должна быть слишком высокой, иначе теплота от подогревающего пламени и нагретого шлака интенсивно отводится от места реза, процесс резки становится неустойчивым и в любой момент может прерваться. При резке стали сгорание железа в кислороде происходит в соответствии со следующими реакциями:
Fe + 0,5O
2Fe + 1,5O
3Fe + 2O 2 = Fe 3 O 4 +276 МДж/кмоль.
Из уравнений следует, что на сгорание 1 кг железа расходуется 0,38 кг (0,27 л) кислорода, или на 1 см 3 железа требуется 2,1 л кислорода. На практике же расход кислорода в процессе резки может быть выше или ниже теоретического значения, так как часть металла выдувается из полости реза в неокислённом виде и вытекающий шлак содержит не только оксиды, но и металлическое железо. Выделяемое при горении железа значительное количество теплоты оплавляет поверхность металла. Этот жидкий металл увлекается в шлак вместе с расплавленными оксидами. Количество теплоты, образующееся в результате сгорания железа при резке, в 6-8 раз превышает количество теплоты, выделяемой подогревающим пламенем резака.
Аппаратура для ручной кислородной резки
... резки стали толщиной до 300 мм, и специального значения (для резки металла больших толщин, для срезки заклепок, вырезки отверстий, для подводной резки и т. п.). По виду горючего, применяемого для резки, резаки делятся на: ацетилено-кислородные резаки, ...
Указанным условиям удовлетворяет лишь железо и его технические сплавы — стали. Большинство других металлов не поддаются кислородной резке.
Разрезаемость металла.
Разрезаемость кислородом конструкционных сталей оценивают по содержанию в них эквивалентного углерода:
C э = C + 0,16Mn + 0,3 (Si + Mo) + 0,4Cr + 0,2V + 0,04 (Ni + Cu).
Цифры, стоящие перед обозначением элементов, указывают их содержание в сталях (в процентах по массе).
Характеристика разрезаемости конструкционных сталей.
Влияние легирующих элементов на разрезаемость стали при кислородной резке. Предварительный подогрев необходим в первую очередь для предупреждения образования трещин и выполняется в газовых печах, нагревательных колодцах или пламенем многопламенной горелки.
Высоколегированные стали кислородной резке не поддаются из-за образования в процессе резки тугоплавких оксидов, которые с трудом удаляются из полости реза (разреза).
Высокоуглеродистые, высоколегированные аустенистные, высокохромистые стали не поддаются газокислородной резке. В этом случае применяют кислородно-флюсовую или плазменно-дуговую резку.
Для резки необходим чистый кислород; даже небольшое количество примесей заметно снижает ей скорость и значительно повышает расход кислорода. В качестве горючего дл подогревающего пламени при кислородной резке можно использовать любой промышленный горючий газ, а также бензин, бензол, керосин и т.д.
Чугун не режется вследствие низкой температуры плавления и высокой температуры начала горения; он горит в кислороде в расплавленном состоянии, что исключает возможность получения качественного реза.
Цветные металлы также не поддаются процессу резки из-за высокой температуры плавления их оксидов и значительной теплопроводности.
Медь не режется вследствие высокой теплопроводности и незначительного количества теплоты, выделяющейся при её сгорании. Медь и её сплавы можно обрабатывать кислородно-флюсовой резкой.
Алюминий не режется по причине чрезмерной тугоплавкости образующегося оксида. Для алюминия и его сплавов применяют плазменную дуговую резку.
Показатели режима резки.
Мощность пламени определяется толщиной разрезаемого металла, составом и состоянием стали (прокат или поковка).
При ручной резке из-за неравномерности перемещения резака обычно приходится в 1,2-2 раза увеличивать мощность пламени по сравнению с машинной. При резке литья следует повышать мощность пламени в 3-4 раза, так как поверхность отливок, как правило, покрыта песком и пригаром.
Для резки стали толщиной до 300 мм применяют нормальное пламя, а толщиной свыше 400 мм — подогревающее пламя с избытком ацетилена (науглероживающее) для увеличения длины факела и прогрева нижней части реза.
Давление режущего кислорода зависит от толщины разрезаемого металла, формы режущего сопла и чистоты кислорода. При повышении давления сверх нормативного скорость резки уменьшается, и качество поверхности реза ухудшается. Соответственно увеличивается расход кислорода.
Дуговая резка металлов
... несколько разновидностей резки металлов. Основные из них: Кислородно-флюсовая резка Газо-дуговая резка Воздушно-дуговая резка Плазменно-дуговая резка Плазменная резка Кислородно-дуговая резка Подводная резка Копьевая резка Сущность резки металлов Кислородная резка стали, основана на свойстве железа гореть в струе чистого кислорода, будучи нагретым, ...
Скорость резки должна соответствовать скорости окисления металла по толщине разрезаемого листа. Судить о правильном выборе скорости резки можно по следующим признакам. При замедленной скорости происходит оплавление верхних кромок разрезаемого листа и расплавленные шлаки (оксиды) вылетают из разреза в виде потока искр в направлении резки.
Слишком большая скорость характеризуется слабым вылетом пучка искр из разреза в сторону, обратную направлению резки, и значительным «отставанием» линий реза от вертикали. Возможно непрорезаение металла. При нормальной скорости резки поток искр и шлака с обратной стороны разрезаемого листа сравнительно небольшой и направлен почти параллельно кислородной струе.
Подготовка поверхности.
Листы укладываются горизонтально на опоры. Свободное пространство под листом должно составлять половину толщины разрезаемого металла плюс 100мм.
Положение и перемещение резака в процессе резки.
Положение резака в начале резки зависит от толщины разрезаемой стали. При прямолинейной резке листовой стали толщиной до 50 мм резак устанавливается вертикально, а при большой толщине листа — под углом 5 о к поверхности торца листа. Затем его наклоняют на 20-30 о в сторону, обратную движению резака. Такое положение резака способствует лучшему прогреву металла по толщине и повышению производительности резки. При вырезке фигурных деталей резак должен быть строго перпендикулярен к поверхности разрезаемого металла.
Для облегчения резки и ускорения прогрева металла целесообразно зарубку зубилом в начальной точке реза.
Пробивка отверстий
При пробивке отверстий в металле толщиной от 20 до 50 мм лист следует устанавливать в наклонном положении или вертикально для облегчения стекания образующегося шлака.
При пробивке отверстий в металле толщиной более 50мм вначале сверлением выполняется небольшое отверстие.
Машинная резка допускает возможность пробивки отверстий резаками в металле толщиной до 100мм. Для этого после нагрева места пробивки до температуры оплавления медленно увеличивают давление режущего кислорода до требуемого значения с одновременным включением резака (машины), скорость которого должна составлять 150-600 мм/мин. Благодаря такому приёму брызги металла не попадают на торец резака, уменьшается вероятность хлопков и обратных ударов. Отверстия можно пробивать как с контура, так и вблизи его.
В процессе резки расстояние от торца мундштука до металла следует поддерживать постоянным. При ручной резке это достигается использованием специальных тележек, прикрепляемых к головке резака, а при машинной — укладкой листа в строго горизонтальное положение и применением суппортов с плавающей кареткой (обработка листов, не подвергавшихся правке).
В случае резки листов толщиной до 100 мм расстояние от торца мундштука до поверхности разрезаемого металла должно быть на 2 мм больше длины ядра пламени. Прирезке стали толщиной более 100 мм и работе на газах-заменителях ацетилена указанное расстояние увеличивают на 30-40% во избежание перегрева мундштука.
Газокислородная резка металла
... слябов перед прокаткой. В связи с разработкой кислородно-флюсовой резки высокохромистых и хромоникелевых сталей, а также чугуна ... при непосредственном контакте кислорода с поверхностью металла, так и посредством передачи (диффузии) его к поверхности металла через тонкий слой окислов - ... оно могло подогревать нижележащие слои металла. В мощных резаках для резки стали больших толщин приходится применять ...
Глава 2. Ручная разделительная кислородная резка.
Резка листов. Ручная разделительная резка применяется для резки листов, поковок профильного проката и скрапа. При резке в качестве горючего газа используется как ацетилен, так и газы-заменители ацетилена (пропан-бутан, природный газ и др.).
В последнем случае увеличивается время предварительного подогрева металла до начала процесса резки, поэтому предпочтительнее использовать ацетилен (где это возможно).
Резка скрапа преимущественно производится с применением жидкого горючего (керосин, бензин и их смеси).
Для резки листов толщиной от 3 до 300 мм используются универсальные ручные резаки Р2А-01,РЗП-01, а до 800 мм — специализированные резаки типа РЗР-2.
Резка стали малой толщины сопровождается значительным перегревом, оплавлением кромок и короблением разрезаемого металла. При этом на резаках устанавливается внутренний мундштук №0 с минимальным отверстием для режущего кислорода и наружный мундштук №1. Лучшие результаты даёт резка с последовательным расположением подогревающего пламени и режущего кислорода. Резку ведут с максимальной скоростью и минимальной мощностью подогревающего пламени. Мундштук резака наклоняют под углом 15-40 о к поверхности реза в сторону, обратную направлению резки.
Перед началом резки нужно положить лист на опоры, очистить место реза и установить на резаке мундштуки в зависимости от толщины разрезаемой стали. Мощность пламени и давления газов (кислорода и горючего) регулируют при открытом вентиле режущего кислорода. Подогрев листа начинается с кромки и длится обычно 3-10 с. Если резку начинают с середины листа, продолжительность подогрева увеличивается в 3-4 раза.
Точность и качество ручной резки зависят от правильного выбора режимов и квалификации резчика. Чтобы повысить точность, резку выполняют по разметке и направляющим (при прямолинейной резке).
Качество резки в значительной степени зависит от своевременного пуска режущего кислорода, равномерного перемещения резака и поддержания постоянного расстояния между резаком и поверхностью листа. Для этого используют простейшие приспособления: циркуль для вырезки фланцев и отверстий, тележку для поддержания постоянного расстояния между резаком и поверхностью листа; направляющую линейку или уголок для прямолинейных резов и т. д.
Существуют особые технологические приемы повышения качества ручной резки. К ним относятся, например, безгратовая и пакетная резка.
Безгратовая резка, Пакетная резка
Пакетную резку можно производить без плотного прилегания листов (с зазорами между ними до 3-4 мм).
В этом случае пакет закрепляют с одной стороны и выполняют резку кислородом низкого давления (0,3-0,5 МПа) с рассверливанием горлового канала мундштука на 0,3-04 мм. Облегчает начало процесса резки сборка листов с небольшим сдвигом. Пакетную резку используют и при машинной резке.
Резка поковок и отливов. Производится ручным резаком типа РЗР-2, работающим на пропан-бутане в смеси с кислородом. Этот резак режет поковки и отливки толщиной от 300 до 800 мм. Для обеспечения качественной резки заготовок такой толщины важное значение имеют положение резака и скорость его перемещения. В начале резки резак располагают под прямым углом к разрезаемой поверхности или под углом 5 о в сторону, обратную движению. После предварительного подогрева места начала резки и пуска режущего кислорода необходимо убедиться в полном прорезании металла по всей толщине и затем начать перемещение резака. К концу реза следует немного снизить скорость резки и увеличить угол наклона резака в сторону, обратную движению, до 10-15 о для обеспечения полного прорезания конечного участка и уменьшения отставания линий реза.
Специальные способы резки
... До разработки способа кислородно-флюсовой резки нержавеющих сталей пользовались приемами резки, основанными на создании вблизи поверхности реза участков металла с высокой температурой нагрева, ... металла перед резкой. Металл нагревают на узком участке в начале реза, а затем на нагретое место направляют струю режущего кислорода, одновременно передвигая резак по намеченной линии реза. Металл сгорает по ...
Резка труб. Ручная кислородная резка используется для обрезки торцов труб под сварку, вырезки дефектных участков и отверстий в трубопроводах и т.д. Резка выполняется с использованием в качестве горючего газа ацетилена или газов-заменителей. Трубы можно резать в любых пространственных положениях. Резка труб небольшого диаметра выполняется без их поворота. При резке неповоротных труб большого диаметра резак перемещается по направляющему угольнику, а при резке поворотных труб используются специальные каретки и роликовые стенды.
Скорость резки труб с толщиной стенок 6-12 мм не превышает 800мм/мин. Для повышения скорости резки резак устанавливают под углом 15-25 о к касательной в точке пересечения оси резака с поверхностью трубы. При этом увеличивается зона взаимодействия кислорода с металлом и образующийся в процессе резки шлак нагревает лежащий впереди участок трубы, благодаря чему улучшается окисление металла. Однако время предварительного подогрева поверхности трубы до температуры воспламенения увеличивается до 60-70с. Чтобы избежать этого, необходимо ввести в зону реакции стальной пруток (или железный порошок).
В этом случае средняя скорость резки труб диаметром 300-1020 мм с толщиной стенки до 12 мм составляет 1,5-2,5 м/мин, т.е. повышается в 2-3 раза по сравнению с резкой при перпендикулярном расположении резака.
Резка производится универсальными или вставными резаками. Режимы её устанавливаются в зависимости от толщины металла согласно паспортным характеристикам резаков.
Резка профильного проката. Последовательность операций резки зависит от профиля разрезаемого металла. Резку уголка начинают с кромки полки. Резку двутавровых балок начинают с резки полок, а затем прорезают стойку.
2.2. Поверхностная кислородная резка
Поверхностной кислородной резкой называют процесс снятия слоя металла кислородной струёй. Эта резка отличается от разделительной тем, что вместо сквозного разреза на поверхности обрабатываемого металла образуется канавка. Профиль её зависит от формы и размеров выходного канала мундштука для режущего кислорода, а также режимов резки и расположения (угол наклона) резака относительно листа.
Суть процессов разделительной и поверхностной резки одинакова. Однако в последнем случае струя кислорода направляется под острым углом к поверхности металла и быстро перемещается. Источником нагрева металла является не только подогревающее пламя резака, но и расплавленный шлак, который, растекаясь по поверхности листа вдоль линии реза, подогревает нижележащие слои металла. Следовательно, при поверхностной резке эффективнее используется теплота, выделяемая в результате окисления железа, чем при разделительной. В результате этого скорость поверхностной резки достигает 2-4 м/мин, соответственно повышается и производительность труда. Ручным резаком удаляется до 40 кг/ч металла, в то время как при пневматической вырубке — не более 2-3 кг/ч.
Резка металла и ее основные виды
... строго перпендикулярным к поверхности разрезаемого металла. Рис.2. Положение резака при работе с листовой сталью. А - начало резки; Б - процесс резки Если стоит задача ... металла. Продукты сгорания выдувают из реза струёй кислорода и газов, образующихся при горении металла. К резке окислением относится газопламенная (кислородная) и кислородно-флюсовая резка. При резке плавлением металл в месте резки ...
Поверхностная резка широко применяется в металлургической промышленности и сварочном производстве. В сварочном производстве поверхностная резка используется для вырезки дефектных участков швов и при ремонтных работах.
Ручная резка выполняется резаками типов РПК и РПА, а машинная с помощью машин огневой зачистки (МОЗ).
Они удаляют слои металла толщиной от 0,5 до 3,5 мм одновременно с четырех сторон сляба или блюма. Производительность сплошной зачистки проката велика и составляет 600-1000 кг/ч в зависимости от сортамента обрабатываемой стали. Скорость движения металла при зачистке достигает 45-50 м/мин.
Ручная зачистка начинается с прогрева начального участка до температуры воспламенения металла. При включении режущего кислорода образуется очаг горения металла и обеспечивается устойчивый процесс зачистки за счет равномерного перемещения резака вдоль линии реза. При нагреве резак обычно располагается под углом 70-80 о к поверхности. В момент подачи режущего кислорода его наклоняют на 15-45 о .
При прочих равных условиях глубина и ширина канавки зависят от скорости резки и с её увеличением уменьшаются. Глубина канавки увеличивается с возрастанием угла наклона мундштука резака, повышением давления режущего кислорода и уменьшением скорости резки. Ширина канавки определяется диаметром канала режущей струи кислорода. Чтобы избежать появления закатов на поверхности заготовки, ширина канавки должна быть в 5-7 раз больше её глубины.
При необходимости зачистки дефектов на значительной поверхности обычно производят резку «ёлочкой» за один или несколько проходов, придавая резаку колебательные движения. Расстояние между мундштуком и зачищаемым металлом должно быть постоянным.
Поверхностная кислородная резка может быть использована для зачистки дефектов на поверхности высоколегированных сталей. В этом случае следует применять кислородно-флюсовую резку в сочетании с поверхностной, используя резаки типа РПА или другие с кислородно-флюсовой оснасткой и установку типа УГПР.
Свойства зоны термического влияния при резке.
В процессе газокислородной резки в разрезаемый металл вводится значительное количество теплоты. Нагрев происходит неравномерно и распределяется по кромке реза и сравнительно узкой полосе металла, прилегающей к резу. Это создаёт напряжения в металле и деформирует его, искажая геометрическую форму. Кромка реза несколько укорачивается и в прилегающем слое возникают растягивающие напряжения, которые могут быть полностью сняты лишь отжигом с равномерным нагревом всей детали. Напряжения и деформации также уменьшаются при механической обработке (строгание или фрезерование кромки реза).
Полоса металла шириной 2-5 мм, прилегающая к резу, быстро нагревается выше критических температур, а затем быстро охлаждается вследствие отвода теплоты в холодную основную массу металла. Происходит термообработка металла, соответствующая закалке.
Степень закалки, образующиеся структуры и максимальная твердость кромки реза определяются в первую очередь химической обработке. Простые углеродистые стали, содержащие менее 0,3 % углерода, при резке почти не закаливаются. У легированных сталей и сталей с повышенным содержанием углерода часто значительно повышается твердость по кромке реза. Металл нагревается до наивысшей температуры у поверхности кромок, где обычно происходит полное аустенитное превращение, наблюдаются максимальные изменения структуры и твердости. В низкоуглеродистых сталях образуется сорбитная структура; по мере повышения содержания углерода и легирующих элементов в стали появляется троостит, а затем и мартенсит, свидетельствующий о высокой твердости и хрупкости металла. По мере удаления от кромки изменения структуры постепенно становятся менее заметными, твердость уменьшается и на расстоянии несколько миллиметров от кромки основной металл сохраняет первоначальную структуру.
Ширина зоны термического влияния при кислородной резке зависит от химического состава и толщины разрезаемого металла, возрастая вместе с ней. При резке низкоуглеродистой стали толщиной 10 мм ширина зоны влияния не превышает 1 мм; при толщине 150-200 мм ширина этой зоны составляет около 3 мм. Стали легированные и с повышенным содержанием углерода толщиной 100 мм могут иметь зону термического влияния шириной до 6 мм.
Исследования структуры и механических свойств металла показали, что кислородная резка меньше изменяет свойства кромки, чем механическая резка ножницами и фрикционной пилой. Для низкоуглеродистой стали нет необходимости удалять поверхностный слой металла с кромки реза; при последующей сварке достаточно очистить кромки от окалины. После резки сталей, чувствительных к термической обработке, иногда приходится прибегать к дополнительным операциям: механическому строганию кромки, местному отжигу. Особенно опасным является возникновение мелких трещин в зоне влияния, что иногда наблюдается у сталей, легко закаливающихся. В подобных случаях используют предварительный подогрев металла. Он уменьшает коробление, внутренние напряжения, изменения структуры, твердость металла. Поэтому подогрев часто является единственным надежным средством, обеспечивающим качественную кислородную резку легко закаливающихся легированных и углеродистых сталей. При машинной кислородной резке подогрев осуществляется мощными многопламенными горелками, смонтированными на режущей машине и перемещающимися вместе с кислородным резаком вдоль поверхности разрезаемого металла.
Помимо структурных превращений металла, при кислородной резке происходит изменение его химического состава на глубину до 2-3 мм. Наиболее существенным является повышение содержания углерода у поверхности реза, что можно объяснить науглероживающим действием подогревательного пламени. Однако повышение содержания углерода происходит и при использовании водородного пламени, которое не может науглероживать металл. По-видимому, основной причиной является миграция (перемещение) углерода при неравномерном нагреве металла в более нагретые области. Так как наиболее сильно нагревается поверхность кромки реза, то наблюдается перемещение углерода из внутренних менее нагретых слоёв металла к поверхности кромки.
2.3. Техника безопасности при сварке
Газопламенная обработка связана с использованием горючих взрывоопасных газов. Это требует строгого соблюдения следующих правил техники безопасности:
Запрещается производить работы в непосредственной близости от легковоспламеняющихся, горючих материалов, таких как бензин, керосин, стружка и др.
Сварку внутри резервуаров и в плохо вентилируемых помещениях и емкостях следует вести с применением систем принудительной вентиляции и с перерывами в работе. Снаружи должен находиться второй человек, который способен оказать помощь в случае необходимости.
При резке металлов больших толщин следует применять резаки с удлиненными трубками для уменьшения влияния высокой температуры на рабочего.
Выполнение газопламенных работ и применение открытого огня допускается на расстоянии не менее 10м от перепускных рам и передвижных ацетиленовых генераторов и 5м от отдельно стоящих баллонов с горючими газами.
При сварке можно применять только редукторы с исправными манометрами.
Кислородные редукторы следует предохранять от попадания на них смазочных материалов.
При пуске газа в редуктор нельзя стоять перед редуктором.
Все соединения редуктора должны быть герметичны.
Запрещается использование переходников, тройников для одновременного питания нескольких горелок.
Во время транспортировки баллонов с газом на них необходимо навернуть защитные колпачки для предотвращения от случайных повреждений и загрязнения. Переносить или передвигать их следует на специальных устройствах (тележках, носилках), во избежание их падения либо ударов друг о друга. Можно перемещать баллоны кантовкой, слегка наклоняя, но только на короткие расстояния.
На месте сварки хранить кислородные баллоны можно только при непосредственном проведении сварочных работ. На рабочем посту разрешается хранить 2 баллона: 1-й рабочий, 2-ой запасной. Неполные баллоны следует хранить только в вертикальном положении и закрытыми, чтобы избежать возможности их падения и механического повреждения. Пустые же баллоны разрешается хранить штабелями, но высотой не более 4 рядов. Баллоны, хранящиеся на строительных площадках, должны храниться во временном складе из огнеупорного материала.
Вентили кислородных баллонов следует предохранять от попадания на них масел, пленки которых могут самовоспламеняться при контакте со сжатым кислородом. Запрещается работать с баллонами, давление в которых ниже рабочего, установленного редуктором данного баллона.
Баллоны для газов-заменителей окрашивают в красный цвет и эксплуатируют в соответствии с правилами обращения с баллонами со сжатым или сжиженным газом. В процессе хранения и эксплуатации нельзя подвергать баллоны с газами нагреву, так как это приводит к повышению давления в них и может привести к взрыву.
Пожарная безопасность при сварке.
На строительно-монтажной площадке опасными факторами пожара являются: открытый огонь (сварочная дуга, пламя газовой сварки и резки); искры и частицы расплавленного металла, которые возникают при электросварке и резке; повышенная температура изделий, которые подвергаются сварке и резке.
Травмы от пожаров могут возникнуть от воспламенения горючих материалов, находящихся вблизи мест производства сварочных и газорезательных работ, а также от неисправного состояния электрической проводки.
Травмы от взрывов могут возникнуть при неправильном обращении с ацетиленовыми генераторами, карбидом кальция, баллонами для сжатых газов, а также при ремонте (с применением варки) тары, используемой для хранения горючих жидкостей и сосудов, находящихся под давлением.
Причинами пожаров технического характера на строительно-монтажной площадке являются: неисправность электрооборудования (короткое замыкание, перегрузки и большие переходные сопротивления); плохая подготовка оборудования к ремонту; несоблюдение графика планового ремонта; износ и коррозия оборудования и т. д. Причинами пожаров организационного характера являются: небрежное отношение с открытыми источниками огня, неправильное хранение пожароопасных веществ; несоблюдение правил пожарной безопасности и т. д.
Пожарная безопасность на строительно-монтажных площадках может быть обеспечена совокупностью мероприятий, направленных на предупреждение пожаров, предотвращение распространения огня в случае возникновения пожаров и создание условий, способствующих быстрой ликвидации начавшегося пожара.
Согласно «Правилам пожарной безопасности при производстве строительно-монтажных работ» предусматривается комплекс мероприятий по пожарной безопасности, обеспечивающих снижение опасности возникновения пожара и создание условий быстрой ликвидации пожара на строительно-монтажной площадке, Предусмотренные на строительно-монтажной площадке мероприятия, устраняющие причины возникновения пожаров, подразделяются на организационные, эксплуатационные, технические и режимные.
Заключение
Окислением можно резать только металлы, температура воспламенения которых в кислороде ниже температуры их плавления. Это первое условие. Такой металл горит в твердом состоянии, рез получается ровным по ширине, поверхность его гладкая, продукты горения легко удаляются кислородной струей. Второе условие — температура плавления образующихся при горении окислов должна быть ниже температуры плавления разрезаемого металла. Тогда они при температуре резки жидкотекучи и легко удаляются из реза. И третье условие — разрезаемый металл должен иметь небольшую теплопроводность, чтобы легко было нагреть зону резки до температуры воспламенения.
Всем этим условиям удовлетворяют железо и углеродистые стали. Температура горения железа в кислороде 1050… 1360 °С, температура его плавления 1535 °С. Окислы FeO и Fe304 плавятся при температурах 1350 и 1400 °С. Теплопроводность железа по сравнению с другими конструкционными материалами не велика. Для сравнения рассмотрим, каким условиям, необходимым для возможности резки окислением, удовлетворяет алюминий. Его температура воспламенения в кислороде 900 °С, а плавления — 660 °С, следовательно, гореть он будет только в жидком состоянии, получить стабильную форму реза невозможно. Алюминий образует окисел А1203 с температурой плавления 2050 °С — в три с лишним раза больше, чем у самого алюминия. Такой окисел будет при резке твердым, удалить его трудно. И, наконец, большая теплопроводность алюминия потребует для резки большой концентрации мощности, теплоты от его горения будет недостаточно. Поэтому алюминий резать окислением невозможно. Некоторые легирующие сталь металлы тоже образуют оксиды с высокой температурой плавления, например оксиды хрома плавятся при температуре около 2270 °С, никеля — 1985 °С, меди — 1230 °С. Поэтому высоколегированные хромоникелевые стали резке окислением не поддаются. Способность материала подвергаться кислородной резке называют разрезаемостъю. Разрезаемость углеродистых сталей с увеличением содержания в них углерода ухудшается. Легирующие элементы в стали также препятствуют кислородной резке.
Библиографический список
[Электронный ресурс]//URL: https://drprom.ru/kursovaya/termicheskaya-rezka-metallov/
1. Рыбаков В.М. Дуговая и газовая сварка. М. Высшая школа,1981
2. Мисник И.Б. Ручная дуговая сварка металлов. Мн. Высшая школа, 1981
3. Геворкян В.Г. Основы сварочного дела. М. Высшая школа, 1969
4. Шебеко Л.П. Оборудование и технология автоматической и полуавтоматической сварки. М. Высшая школа, 1981
5. Лупачёв В.Г. Газовая сварка. Мн. Высшая школа, 2001
6. Куркин С.А., Николаев Г.А. Сварка конструкций: технология изготовления, механизация, автоматизация и контроль качества в сварочном производстве. М.: Высш. шк., 1991
7. Справочник молодого газосварщика и газорезчика: справочное пособие. Н.И. Никитин, С.П. Нешумова, И.А. Антонов. — м.: Высш. Шк 1990.
8.Маслов В.И. Сварочные работы . Москва , ИЦ Академия ,2006г.
9. Виноградов В.С. Электрическая дуговая сварка . Москва , ИЦ Академия, 2009г.
10. Чернышов Г.Г. Сварочное дело сварка и резка металлов . Москва ПрофОбрИздат, 2002г.
11. Чернышов Г.Г. Технология электрической сварки плавлением . Москва , ИЦ Академия , 2006г.
12. Фоминых.В.П, Яковлев.А.П. Ручная дуговая сварка. — М.: Высшая школа, 1986. — 288с. — (Профтехобразование).