Автоматизация различных технологических процессов, эффективное управление различными агрегатами, машинами, механизмами требуют многочисленных измерений разнообразных физических величин.
Датчики, называемые также измерительными преобразователями, или по-другому, сенсоры, являются элементами многих систем автоматики — с их помощью получают информацию о параметрах контролируемой системы или устройства.
Датчик — это элемент измерительного, сигнального, регулирующего или управляющего устройства, преобразующий контролируемую величину (температуру, давление, перемещение в пространстве, частоту, силу света, электрическое напряжение, ток и т. д. ) в сигнал, удобный для измерения, передачи, хранения, обработки, регистрации, а иногда и для воздействия им на управляемые процессы. Или проще, датчик — это устройство, преобразующее входное воздействие любой физической величины в сигнал, удобный для дальнейшего использования.
2. Классы и требования
Используемые датчики весьма разнообразны и могут быть классифицированы по различным признакам.
В зависимости от вида входной (измеряемой) величины различают: датчики механических перемещений (линейных и угловых), пневматические, электрические, расходомеры, датчики скорости, ускорения, усилия, температуры, давления и др.
В настоящее время существует приблизительно следующее распределение доли измерений различных физических величин в промышленности: температура — 50%, расход (массовый и объемный) — 15%, давление — 10%, уровень — 5%, количество (масса, объем) — 5%, время — 4%, электрические и магнитные величины — менее 4%.
По виду выходной величины, в которую преобразуется входная величина, различают неэлектрические и электрические: датчики постоянного тока (ЭДС или напряжения), датчики амплитуды переменного тока (ЭДС или напряжения), датчики частоты переменного тока (ЭДС или напряжения), датчики сопротивления (активного, индуктивного или емкостного) и др.
Большинство датчиков являются электрическими. Это обусловлено следующими достоинствами электрических измерений:
- электрические величины удобно передавать на расстояние, причем передача осуществляется с высокой скоростью;
- электрические величины универсальны в том смысле, что любые другие величины могут быть преобразованы в электрические и наоборот;
- они точно преобразуются в цифровой код и позволяют достигнуть высокой точности, чувствительности и быстродействия средств измерения.
Датчик усилия. Принцип работы и область применения.
Физика» «Работа совершаемая электрическим током
... указывается напряжение, на которое рассчитаны эти устройства. Работа и мощность электрического тока. Из вышесказанного понятно, что электрический ток совершает определенную работу. ... электрической цивилизации. Основные величины электрического тока Количество электричества и сила тока. Действия электрического тока могут быть сильными или слабыми. Сила действия электрического тока зависит от величины ...
Метрические датчики силы (динамометры) являются неотъемлемым компонентом весоизмерительных систем. Они служат «поставщиком» исходных данных в системах автоматического учета и контроля экономической деятельности любого серьезного предприятия. Без них невозможно построение систем автоматизации технологическими процессами. Сфера их применения — металлургия, строительство, сельское хозяйство, производство пищевых продуктов и т. д.
Принцип работы датчиков силы базируется на преобразовании усилий, приводящих к деформации чувствительного элемента, в электрический сигнал.
Процесс преобразования включает ряд последовательных операций. Они протекают на физическом и электрическом уровнях. На физическом уровне приложенная сила вызывает деформацию упругого элемента и закрепленного на нем тензодатчика. На электрическом уровне происходит преобразование величины деформации в аналоговый сигнал. В последующих операциях сигнал преобразуется в удобную для пользования форму.
Работа тензометрических датчиков базируется на различных физических явлениях, позволивших создать следующие типы датчиков:
- Резистивные;
- Магнитные;
- Тактильные;
- Пьезорезонансные;
- Емкостные;
- Пьезоэлектрические.
Резистивные датчики силы
Из предложенных к рассмотрению датчиков наиболее применяемыми (более 95%) являются резистивные датчики силы. Это обусловлено широким диапазоном воспринимаемых усилий (5 Н — 5 МН) и точностью измерения. Они могут использоваться при действии статических и динамических нагрузок. Существенным достоинством этого типа датчиков является линейность выходного сигнала.
Чувствительным элементом датчика является тензорезистор (рис. 2).
Датчик представляет собой тонкую проволоку 1, жестко закрепленную на гибкой подложке 2.
Рис. 2. Проволочный тензорезистор
1 — чувствительный элемент, 2 — подложка, 3 — выводы, 4 — защитная пленка
Концы проволоки снабжены выводами 3 для внешних подключений. Зигзагообразно уложенная проволока и места соединения ее с выводами закрыты защитной пленкой 4.
Тензорезистор подложкой приклеивается к упругому элементу, воспринимающему нагрузку. Последний под действием силы деформируется и вызывает деформацию тензорезистора. Изменение длины проволоки при действии сил растяжения или сжатия приводит к пропорциональному изменению величины ее сопротивления.
Связь между величиной деформации тела и действующей на него силой подчиняется закону Гука. Автор первоначально сформулировал его словами: «каково удлинение, такова и сила». В отношении тензорезистивных датчиков, учитывая изложенное, этот закон можно интерпретировать так: «каково сопротивление, такова и сила».
Обычно тензорезисторы включаются в плечи чувствительных мостовых схем. В этом случае о действующей силе судят по напряжению в диагонали моста.
Магнитные датчики силы
Принцип работы магнитных датчиков силы базируется на явлении магнитострикции, точнее — на обратимости этого явления. Магнитострикционный эффект (изменение геометрических размеров) наблюдается при нахождении тела в магнитном поле. Обратимость обозначает, что принудительное изменение геометрических размеров тела (деформация) обуславливает изменение его магнитных свойств. Это явление получило название магнитоупругого эффекта. Следует отметить, что при снятии деформирующей силы магнитные свойства тела принимают исходное значение.
Проведение калибровки датчика давления МЕТРАН-150-CD с составлением ...
... устройство и работа датчика Конструкция датчика давления МЕТРАН-150-CD представлена на рисунке 1. Рисунок 1. Конструкция датчика давления МЕТРАН-150-CD: 1-корпус, ... давления подается в камеру измерительного блока, преобразуется в деформацию чувствительного элемента и изменение электрического сигнала. Электронный преобразователь преобразует электрический сигнал в соответствующий выходной сигнал ...
На физическом уровне эти явления объясняются изменением положения атомов в кристаллической решетке при воздействии внешнего магнитного поля или прикладываемой силы.
Простейший вариант конструкции магнитного датчика силы представлен на рис. 3. На ферромагнитном сердечнике 1 размещена катушка индуктивности 2. В случае действия на сердечник силы 3 он деформируется и переходит в напряженное состояние.
Рис. 3. Вариант конструкции магнитного датчика силы Изменение состояния сердечника приводит к изменению его магнитной проницаемости. Это обуславливает пропорциональное изменение магнитного сопротивления сердечника. В результате изменяется индуктивность катушки.
Таким образом, трансформация физического воздействия деформирующей силы в электрический сигнал (рис. 4, вариант 1) можно отобразить в виде последовательных превращений.
Рис. 4. Трансформация сигналов в магнитных датчиках силы Более распространенными являются магнитные датчики силы с двумя обмотками. Первичная обмотка такого датчика запитана от генератора, во вторичной обмотке наводится эдс. При деформации сердечника изменяется магнитная проницаемость и связанная с ней взаимоиндуктивность (рис. 4, вариант 2).
Конечным результатом действия силы является изменение эдс во вторичной обмотке датчика.
Тактильные датчики силы
Тактильные (осязательные) датчики являются самыми «молодыми». Их появление обусловлено развитием робототехники и автоматических поточных линий.
Существующая классификация рассматривает три типа тактильных датчиков: касания, усилия и проскальзывания. Первые два типа тактильных датчиков измеряют один и тот же параметр — действующую силу. Отличаются они только видом выходного сигнала. Датчики усилия имеют аналоговый выходной сигнал, а датчики касания — выход релейного типа с регулируемымиуставками.
Реализуются тактильные датчики с использованием различных физических явлений, но принципиальным отличием от других датчиков является их небольшая толщина. Это достигается за счет использования специальных материалов. Они, как правило, обладают гибкостью, эластичностью и прочностью при хорошей электропроводности.
На рис. 5 приведен пример реализации тактильного датчика, реагирующего на силовое воздействие.
Рис. 5. Пример простого тактильного датчика силы Датчик представляет собой две тонких металлических пластины 1 между которыми расположена ячеистая прокладка 2 из изоляционного материала. Один полюс источника напряжения подключен к верхней пластине. Второй — через нагрузочный резистор Rн к нижней пластине. Когда к верхней пластине в районе ячейки прикладывается внешняя сила, пластина, прогибаясь, замыкается с нижней. Через резистор протекает ток, а падение напряжения на нем служит выходным информационным сигналом.
Тактильный датчик с использованием пьезоэлектрического эффекта приведен на рис. 6.
Источники пластовой энергии. Силы, действующие в пласте
... при условии, когда единственным источником является энергия сжатого газа, т. е. когда пластовые воды не активны. Запасы пластовой энергии расходуются на преодоление сил вязкого трения при перемещении жидкостей и газов к ...
Рис. 6. Пьезоэлектрический тактильный датчик силы Он представляет собой два параллельных слоя 1 и 2 пьезоэлектрических пленок, разграниченных акустически проницаемым слоем 3. К нижней пьезопленке подключен генератор и при его работе она колеблется с генерируемой частотой. При этом такие же колебания возбуждаются в промежуточном слое и в верхнейпьезопленке. На противоположных поверхностях последней возникает разность потенциалов. Напряжение с верхней пленки подается на усилитель и синхронный детектор, формирующий выходной сигнал с учетом амплитуды и фазы. При воздействии на верхнюю пленку деформирующей силы, характеристики всех слоев изменяются, что приводит к пропорциональному изменению выходного сигнала
Пьезорезонансные датчики силы
В датчиках силы этого типа используются оба эффекта, свойственные пьезокристаллическим материалам: прямой и обратный пьезоэффекты (21, «https:// «).
Чувствительным элементом датчика является механический резонатор. Колебания резонатора, возбуждаемые напряжением питающего генератора (обратный пьезоэффект), обуславливают его напряженное состояние. В свою очередь такое состояние вызывает возникновение соответствующих зарядов на электродах пьезоэлемента (прямой пьезоэффект).
Результатом одновременного электрического возбуждения колебаний резонатора и снятия электрического сигнала является возникновение резонансных колебаний.
Известно несколько вариантов включения пьезорезонансных датчиков силы в измерительные схемы.
В схемах с применением автогенераторов резонатор используется в задающих цепях. Деформация резонатора внешней силой изменяет частоту генератора пропорционально приложенному усилию.
В другом варианте такой же схемы внешнее воздействие вызывает изменение положения электродов относительно резонатора, что также приводит к изменению частоты.
На рис. 7 приведена схема с использованием генератора опорной частоты и резонансного фильтра. Деформирующая сила, воздействуя на резонатор, приводит к изменению частотных настроек фильтра и пропорциональному изменению выходного напряжения.
Рис. 7. Схема датчика силы с резонансным фильтром
Емкостные датчики силы
Емкостные датчики силы относятся к параметрическим. Конструктивно они представляют конденсатор, состоящий из двух параллельных пластин с зазором между ними.
Емкость такого конденсатора пропорциональна площади пластин, диэлектрической проницаемости материала зазора и обратно пропорциональна расстоянию между пластинами.
Изменение какого либо из перечисленных параметров приводит к изменению емкости, которую можно измерить соответствующей аппаратурой. Это положение используется при построении емкостных датчиков силы.
Для удобства пользования величину емкости преобразовывают в легко измеряемую величину, например, в ток, напряжение или частоту. Для преобразования применяются мостовые, резонансные или другие электрические схемы.
В зависимости от способа воздействия внешней силы на элементы датчика могут быть реализованы различные варианты емкостных датчиков силы (Рис. 8)
Обычно в емкостных датчиках силы используют вариант с изменением диэлектрической проницаемости при сжатии диэлектрика Конструктивно емкостной датчик состоит из корпуса с упругим элементом, через который усилие передается на диэлектрик.
Датчики перемещения
... катушки (Рисунок 6). Схема индуктивного датчика перемещения для объектов из ферромагнитных материалов Рисунок 6 - Индуктивный датчик перемещения для объектов из ферромагнитных материалов 4. Вихретоковые датчики перемещения Датчики данного ... емкостные инклинометры с электрическим выходным сигналом, пропорциональным углу наклона датчика. В качестве основных можно считать следующие области применения ...
Рис. 8. Варианты реализации емкостных датчиков и графики зависимости емкости от величины действующей силы
Пьезоэлектрические датчики силы
Основой работы датчиков силы этого типа является прямой пьезоэффект, которым обладают некоторые материалы. К ним относятся природные кристаллы кварца и турмалина, искусственные кристаллы фосфата аммония и титаната бария.
Эти кристаллы обладают большим пьезоэффектом и высокой механической прочностью, химически устойчивы. Их пьезоэлектрические свойства незначительно изменяются в широком диапазоне температур. Геометрическая форма кристалла не влияет на свойства кристалла.
Суть пьезоэлектрического эффекта заключается в следующем. В момент действия силы на пластину из пьезоэлектрического материала, на ее поверхностях возникают разноименные заряды. Их величина пропорциональна приложенной силе.
Конструктивно пьезоэлектрический датчик силы (рис. 9) состоит из корпуса 1, в котором установлены две пьзопластины 2 с расположенным между ними выводом 3. Вторым выводом служит корпус датчика. На его основании расположена нижняя пьезопластина.
В момент приложения силы на нажимное устройство 4 пьезоэлектрические пластины сжимаются и генерируют напряжение, которое поступает на вход усилителя.
Рис. 9. Пьезоэлектрический датчик силы Пьезоэлектрические датчики применяются для измерения динамически действующих сил.
3. Датчик перемещения. Принцип работы и область применения
Датчик перемещения — это прибор, предназначенный для определения величины линейного или углового механического перемещения какого-либо объекта. Разумеется, подобные приборы имеют колоссальное количество практических применений в самых разнообразных областях, поэтому существует множество классов датчиков перемещения, которые различаются по принципу действия, точности, цене и прочим параметрам.
По принципу действия датчики перемещения могут быть:
Емкостными Оптическими Индуктивными Ультразвуковыми На основе эффекта Холла
Емкостные датчики перемещения
В основе работы датчиков данного типа лежит взаимосвязь ёмкости конденсатора с его геометрической конфигурацией. В простейшем случае речь идёт об изменении расстояния между пластинами вследствие внешнего физического воздействия (Рисунок 1).
Поскольку ёмкость конденсатора изменяется обратно пропорционально величине зазора между пластинами, определение ёмкости при прочих известных параметрах позволяет судить о расстоянии между пластинами. Изменение ёмкости можно зафиксировать различными способами (например, измеряя его импеданс), однако в любом случае конденсатор необходимо включить в электрическую цепь.
Рисунок 1. Емкостной датчик линейного перемещения с изменяющейся величиной зазора Другой схемой, где выходным параметром является электрическая ёмкость, является схема, содержащая конденсатор с подвижным диэлектриком (Рисунок 2).
Перемещение диэлектрической пластины между обкладками конденсатора также приводит к изменению его ёмкости. Пластина может быть механически связана с интересующим объектом, и в этом случае изменение ёмкости свидетельствует о перемещении объекта. Кроме того, если сам объект обладает свойствами диэлектрика и имеет подходящие габариты — он может быть использован непосредственно в качестве диэлектрической среды в конденсаторе.
Датчики и сенсоры для контроля мехатронных систем
... и других приемов, позволяющих на порядок уменьшить инерционность устройств. 1.3 Физические принципы датчиков Датчики являются преобразователями обычно неэлектрических физических величин в электрические сигналы. Перед тем как ... существует электрическое поле. Электрическое поле в каждой точке можно определить по величине силы, действующей на заряд: Здесь Е -- вектор того же самого направления, ч
Рисунок 2. Емкостной датчик линейного перемещения с подвижным диэлектриком
Оптические датчики перемещения
Существует множество вариаций схем датчиков перемещения, основанных на различных оптических эффектах. Пожалуй, наиболее популярной является схема оптической триангуляции — датчик положения является, по сути, дальномером, который определяет расстояние до интересующего объекта, фиксируя рассеянное поверхностью объекта излучение и определяя угол отражения, что даёт возможность определить длину d — расстояние до объекта (Рисунок 3).
Важным достоинством большинства оптических датчиков является возможность производить бесконтактные измерения, кроме того такие датчики обычно довольно точны и имеют высокое быстродействие.
датчик сигнальный измерительный Рисунок 3. Оптический датчик перемещения на основе схему оптической триангуляции В другой реализации оптического датчика, предназначенной для регистрации и определения параметров малых перемещений и вибраций, используется двойная решётчатая конструкция, а также источник света и фотодетектор (Рисунок 4).
Одна решётка неподвижна, вторая подвижна и может быть механически закреплена на интересующем объекте или каким-либо способом передавать датчику его движение. Малое смещение подвижной решётки приводит к изменению интенсивности света, регистрируемой фотодетектором, причём с уменьшением периода решётки точность датчика возрастает, однако сужается его динамический диапазон.
Рисунок 4. Оптический датчик перемещения на основе дифракционных решеток Дополнительными возможностями применения обладают оптические датчики, учитывающие поляризацию света. В таких датчиках может быть реализован алгоритм селекции объектов по отражательным свойствам поверхности, т. е. датчик может «обращать внимание» только на объекты с хорошей отражающей способностью, прочие объекты игнорируются. Разумеется, чувствительность к поляризации негативно сказывается на стоимости подобных устройств.
Индуктивные датчики перемещения
В одной из конфигураций датчика данного типа чувствительным элементом является трансформатор с подвижным сердечником. Перемещение внешнего объекта приводит к перемещению сердечника, что вызывает изменение потокосцепления между первичной и вторичной обмотками трансформатора (Рисунок 5).
Поскольку амплитуда сигнала во вторичной обмотке зависит от потокосцепления, по величине амплитуды вторичной обмотки можно судить о положении сердечника, а значит и о положении внешнего объекта.
Рисунок 5. Индуктивный датчик перемещения на трансформаторе Другая конфигурация имеет более простую схему, однако она пригодна лишь для небольшого количества приложений, где требуется определять незначительные перемещения или вибрации объектов, состоящих из ферромагнитного материала. В данной схеме интересующий ферромагнитный объект играет роль магнитопровода, положение которого влияет на индуктивность измерительной катушки (Рисунок 6).
Индукционные датчики
... на омические, реостатные, фотоэлектрические (оптико-электронные), индуктивные, емкостные и д.р. Различают три класса датчиков: аналоговые датчики, т. е. датчики, вырабатывающие аналоговый сигнал, пропорционально изменению входной ... основе были созданы различные приборы - от самых простых, регистрирующих линейные перемещения, до сложных, таких как системы зажигания с цифровым управлением, системы ...
Рисунок 6. Индуктивный датчик перемещения для объектов из ферромагнитных материалов
Ультразвуковые датчики перемещения
В ультразвуковых датчиках реализован принцип радара — фиксируются отражённые от объекта ультразвуковые волны, поэтому структурная схема обычно представлена источником ультразвуковых волн и регистратором (Рисунок 8), которые обычно заключены в компактный корпус. Определение временной задержки между моментами отправки и приёма ультразвукового импульса позволяет измерять расстояние до объекта с точностью, доходящей до десятых долей миллиметра. Наряду с оптическими, ультразвуковые датчики на сегодняшний день являются, пожалуй, наиболее универсальным и технологичным бесконтактным средством измерения. Использование этого принципа измерений опять же можно найти в детекторах обнаружения дефектов, только на этот раз уже в ультразвуковых дефектоскопах.
Рисунок 8. Ультразвуковой датчик перемещения
Датчики на основе эффекта Холла
Датчики этого типа имеют конструкцию подобную конструкции магниторезистивных датчиков, однако в основу их работы положен эффект Холла — прохождение тока через проводник, на который воздействует внешнее магнитное поле, приводит к возникновению разности потенциалов в поперечном сечении проводника.
Магниторезистивные датчики перемещения
В магниторезистивных датчиках перемещения используется зависимость электрического сопротивления магниторезистивных пластинок от направления и величины индукции внешнего магнитного поля. Датчик, как правило, состоит из постоянного магнита и электрической схемы, содержащей включённые по мостовой схеме магниторезистивные пластинки и источник постоянного напряжения (Рисунок 9).
Интересующий объект, состоящий из ферромагнитного материала, перемещаясь в магнитном поле, изменяет его конфигурацию, вследствие чего изменяется сопротивление пластинок, и мостовая схема регистрирует рассогласование, по величине которого можно судить о положении объекта.
Рисунок 9. Магниторезистивный датчики перемещения
Е. М. Гордин
2) Густав Олссон «Цифровые системы автоматизации и управления» СПб.2001 г.