Механическая обработка металлов

3-го курса 2-й группы Цыпурко Е.В.

Гродно 2004

Широкое применение в промышленности получили различные механические методы разделения металлов, в первую очередь резка ножовочными полотнами, ленточными пилами, фрезами и др. В производстве используются разнообразные станки общего и специального назначения для раскроя листовых, профильных и других заготовок из различных металлов и сплавов. Однако при многих достоинствах этого процесса существуют значительные недостатки, связанные с низкой производительностью, высокой стоимостью отрезного инструмента, трудностью или невозможностью раскроя материалов по сложному криволинейному контуру. С этими задачами прекрасно справляется лазерная резка металлов.

Отжиг — это термообработка,которая устраняет частично (или полностью) всякого рода неоднородности и неравновесности , которые были внесены в металл при предшествующих операциях ( мех. обработка , обработка давлением , литье , сварка ).

В зависимости от исходного состояния стали отжиг может включать процессы гомогенизации , рекристаллизации и снятия остаточных напряжений.

Именно об этих способах обработки металлов и пойдет речь в данном реферате.

Гомогенизационный отжиг

Основной целью гомогенизационного отжига являются — устранение последствий дендритной или внутрикристаллитной ликвации , которая может привести к :

1.Снижению пластичности, за счет выделения неравновесных хрупких фаз.

2.Уменьшению коррозионной стойкости и развитии электрохимической коррозии внутри сплава.

3.Анизотропии мех. свойств.

4.Снижению температуры солидуса.

5.Уменьшению температуры плавления , из-за которого происходит оплавление дендритов при дальнейшей обработке.

6.Отсутствию стабильности свойств.

Физико — химической основой гомогенизационного отжига является диффузия в твердом состоянии , по этому отжиг желательно проводить при более высоких температурах , чтобы диффузионные процессы , необходимые для выравнивания состава стали , проходили более полно.

Температура нагрева под отжиг колеблется в пределах (0.85-0.90)T пл .

Выдержка будет определяться природой ликвирующих элементов . Так как гомогенизация интенсивно протекает в начальный период отжига ( по мере выравнивания состава сплава градиент концентрации dC/dX уменьшается ), то большие времена выдержки не применяются. Однако для некоторых металлов это время составляет десятки или сотни часов. Для уменьшения времени отжига нужно

4 стр., 1777 слов

Термическая обработка металлов

... отпуск. 2. Отжиг Отжиг - термическая обработка заключающаяся в нагреве металла до определенных температур, выдержка и последующего очень медленного охлаждения вместе с печью. Применяют для улучшения обработки металлов резанием, ... в расплавленных солях, после выдержки в течении времени необходимого для выравнивания температуры по всему сечению, деталь охлаждают на воздухе, что способствует снижению ...

1. Увеличить температуру

2. Изменить dC/dX , а для этого нужно изменить условия кристаллизации.

3. Загрузить в печь уже нагретые слитки.

Гомогенизирующий отжиг может вызвать ряд негативных побочных явлений:

1. Рост зерна аустенита,следовательно ухудшение мех. свойств .

2. Вторичная пористость и неоднородность .

3. Коагуляция избыточных фаз.

Поэтому гомогенизирующий отжиг является предварительной обработкой , после которой поводят полный отжиг,или обработку давлением, или отпуск при 670-680 градусах ,или нормализацию.

дорекристаллизационный

При холодной деформации происходит:

1.Изменение формы и размеров кристаллов

2.Накопление в металле большого количества избыточной энергии ,что в конечном итоге приводит к росту напряжений 1 и 2 родов.

Из-за этого : уменьшаются пластические характеристики, появляется анизотропия механических свойств, увеличивается электросопротивление и уменьшается коррозионная стойкость.

Все это можно попытаться устранить отжигом.

смягчающим и упрочняющим.

Смягчающий

упрочняющий

Рекристаллизационный отжиг используют в промышленности как предварительную операцию перед холодной обработкой давлением,для придания материалу наибольшей пластичности;как промежуточный процесс между операциями холодногодеформирования,для снятия наклепа; и как окончательную термообработку,для придания материалу необходимых свойств.

При выборе режима отжига нужно избегать получения очень крупного зерна и разнозернистости.Скорость нагрева чаще всего не имеет значения.

Отжиг, уменьшающий напряжения

При обработке давлением, литье, сварке, термообработке в изделиях могут возникать внутренние напряжения. В большинстве случаев,они полностью или частично сохраняются в металле после окончания технологического процесса. Поэтому основная цель отжига — полная или частичная релаксация остаточных напряжений.

Причинами возникновения остаточных напряжений являются неодинаковая пластическая деформация или разное изменение удельного объема в различных точках тела, из-за наличия градиента температур по сечению тела.

Напряжения при отжиге уменьшаются двумя путями : вследствии пластической деформации в условиях когда эти напряжения превысят предел текучести и в результате ползучести при напряжениях меньше предела текучести.

Продолжительность отжига устанавливают опытным путем. Определенной температуре отжига в каждом конкретном изделии соответствует свой конечный уровень остаточных напряжений, по достижении которого увеличивать продолжительность отжига практически бесполезно.

Температуру подбирают обычно несколько ниже критической точки Ас 1 .

Скорости нагрева и особенно охлаждения при отжиге должны быть небольшими,чтобы не возникли новые внутренние термические напряжения.

Использование отжига лимитируется теми нежелательными структурными и фазовыми изменениями , которые могут произойти при нагреве. Поэтому приходится либо мириться с недостаточно полным снятием остаточных напряжений при низких температурах ,либо идти на компромис, достигая более полного снятия напряжений при некотором ухудшении механических и других свойств.

6 стр., 2639 слов

Использование стали в медицине. Свойства, характеристики, разновидности ...

... 1.4301. 2. Применение стали в медицине 1 Медицинские инструменты и их классификация В целях удобства изучения инструментов их делят на группы по их основному назначению. В ГОСТ 25725-89 ( ... кровеносных сосудов, извлечения плода при хирургических операциях. Изготовляют из нержавеющей стали 30х13. металл медицина инструмент аппарат Рис. 5 - Крючок медицинский Помимо хирургических инструментов ...

Отжиг II рода

Отжиг второго рода — это термообработка , которая заключается в нагреве стали до температур выше точек Ас 3 или Ас1 ,выдержке и последующем охлаждении. В результате мы получаем почти равновесное структурное состояние стали; в доэвтектоидных сталях — феррит + перлит , в эвтектоидных — перлит и в заэвтектоидных — перлит + вторичный цементит.

После отжига получаем : мелкое зерно, частично или полностью устраненные строчечность, видманштеттову структуру и другие неблагоприятные структуры .

Сталь получается снизкой прочностью и твердостью при достаточном уровне пластичности.

В промышленности отжиг II рода часто используется в качестве подготовительной и окончательной обработки.

Разновидности отжига II рода различаются способами охлаждения и степенью переохлаждения аустенита , а так же положением температур нагрева относительно критических точек .

Полный отжиг

Основные цели полного отжига — устранение пороков структуры , возникших при предыдущей обработке ( лить , горячей деформации или сварке ) , смягчение стали перед обработкой резанием и уменьшение напряжений , для придания стали определенных характеристик.

Вцелом отжиг II рода проводят для приближения системя к равновесию.

Полный

При полном отжиге происходит полная фазовая перекристаллизация стали. При нагреве выше точки Ас 3 образуется аустенит, характеризующийся мелким зерном , который при охлаждении дает мелкозернистую структуру , обеспечивающую высокую вязкость , пластичность и получение высоких свойств после окончательной обработки.

Структура доэвтектоидной стали после полного отжига состоит из избыточного феррита и перлита.

отжиг на крупное зерно

Неполный отжиг

Неполный отжиг доэвтектоидной стали проводят при нагреве до температур выше Ас 1 , но ниже Ас3 . При таких температурах происходит частичная перекристаллизация стали , а именно лишь переход перлита в аустенит . избыточный феррит частично превращается в аустенит и значительная часть его не подвергается перерекристаллизации . Поэтому неполный отжиг не устраняет пороки стали связанные с нежелательными размерами и формой избыточного феррита . Для доэвтектоидной стали неполный отжиг применяется лишь тогда, когда отсутствует перегрев , ферритная полосчатость, и требуется только снижение твердости и смягчения перед обработкой резанием .

Лазерная резка металла

В промышленности получил распространение ряд процессов разделения материалов, основанных на электрохимическом, электрофизическом и физико-химическом воздействиях. Ацителено-кислородная резка, плазменная резка проникающая дугой и другие физико-химические методы разделения обеспечивают повышение производительности по сравнению с механическими методами, но не обеспечивают высокой точности и чистоты поверхностей реза и требуют в большинстве случаев последующей механической обработки. Электроэрозионная резка позволяет осуществлять процесс разделения материалов с малой шириной и высоким качеством реза, но одновременно с этим характеризуются малой производительностью.

38 стр., 18738 слов

Технология изготовления листовой электротехнической стали

... для получения холоднокатаного и калиброванного металла, проката, подвергнутого термической обработкой, и проката с покрытиями, технология ... алюминием, пластиками связаны с использованием холоднокатаной стали. Холоднокатаная сталь для изготовления трансформаторов и электромашин в ... целью улучшения условий захвата металла и предупреждения свариваемости витков рулона при отжиге. Допустимая разница в ...

В связи с этим возникла производственная необходимость в разработке и промышленном освоении методов резки современных конструкционных материалов, обеспечивающих высокую производительность процесса, точность и качество поверхностей получаемого реза. К числу таких перспективных процессов разделения материалов следует отнести лазерную резку металлов, основанную на процессах нагрева, плавления, испарения, химических реакциях горения и удаления расплава из зоны резки.

Сфокусированное лазерное излучение , обеспечивая высокую концентрацию энергии, позволяет разделять практически любые металлы и сплавы независимо от их теплофизических свойств. При этом можно получить узкие резы с минимальной зоной термического влияния. При лазерной резке отсутствует механическое воздействие на обрабатываемый материал и возникают минимальные деформации, как временные в процессе резки, так и остаточные после полного остывания. Вследствии этого лазерную резку можно осуществлять с высокой степени точностью, в том числе легкодеформируемых и нежестких заготовок или деталей. Благодаря большой плотности мощности лазерного излучения обеспечивается высокая производительность процесса в сочетании с высоким качеством поверхностей реза. Легкое и сравнительно простое управление лазерным излучением позволяет осуществлять лазерную резку по сложному контуру плоских и объемных деталей и заготовок с высокой степенью автоматизации процесса. Кратко рассмотренные особенности лазерной резки наглядно демонстрируют несомненные преимущества процесса по сравнению с традиционными методами обработки.

Лазерная резка относится к числу первых технологических применений лазерного излучения, апробированных еще в начале 70-х годов. За прошедшие годы созданы лазерные установки с широким диапазоном мощности (от нескольких десятков ватт до нескольких киловатт), обеспечивающие эффективную резку металлов с использованием вспомогательного газа, поступающего в зону обработки одновременно с излучением лазера. Лазерное излучение нагревает, плавит и испаряет материал по линии предполагаемого реза, а поток вспомогательного газа удаляет продукты разрушения. При использовании кислорода или воздуха при резке металлов на поверхности разрушения образуется оксидная пленка, повышающая поглощательную способность материала, а в результате экзотермической реакции выделяется достаточно большое количество теплоты.

Для резки металлов применяют технологические установки на основе твердотельных и газовых CO 2 — лазеров, работающих как в непрерывном, так и в импульсно-периодическом режимах излучения. Промышленное применение газолазерной резки с каждым годом увеличивается, но этот процесс не может полностью заменить традиционные способы разделения металлов. В сопоставлении со многими из применяемых на производстве установок стоимость лазерного оборудования для резки еще достаточно высока, хотя в последнее время наметилась тенденция к ее снижению. В связи с этим процесс газолазерной резки (в дальнейшем просто лазерной резки) становится эффективным только при условии обоснованного и разумного выбора области применения, когда использование традиционных способов трудоемко или вообще невозможно.

16 стр., 7792 слов

Резка металла и ее основные виды

... дуговая, воздушно-дуговая, сжатой дугой (плазменная), лазерная и термогазоструйная. резка термическая металл кислородная Способность металла подвергаться кислородной резке называется разрезаемостью. Разрезаемость углеродистых сталей ... выделить три группы процессов термической резки: окислением, плавлением и плавлением с окислением. При резке окислением металл в зоне резки нагревают до температуры ...

Список литературы

[Электронный ресурс]//URL: https://drprom.ru/referat/mehanicheskaya-obrabotka-metalla/

1. Новиков И.И. Теория термичесеой обработки металлов .М.: Металлургия,1986.

2. Лахтин Ю.М. Металловедение и термическая обработка металлов. М.: Металлургия , 1993

3. Лившиц Металлография. М.: Металлургия ,1994.