Виды сварных соединений. Структура сварочного шва

Сваркой — называется процесс получения неразъемного соединения посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве или пластическом деформировании, или совместном действии того и другого. Современная сварочная техника располагает большим разнообразием способов сварки. Наибольшее распространение получила электрическая дуговая сварка, при которой местный нагрев свариваемых кромок осуществляется теплом электрической дуги. Явление электрического дугового разряда впервые было открыто в 1802 г. русским ученым, профессором физики Петербургской медико-хирургической академии Василием Владимировичем Петровым. В своих трудах он не только описал явление электрической дуги, но и предсказал возможность использования тепла, выделяемого дугой, для плавления металлов. Таким образом, В. В. Петров первым указал на возможность электрической плавки металлов. Однако это открытие не нашло практического применения и развития в условиях низкого уровня техники.

Только спустя 80 лет, в 1882 г. талантливый русский изобретатель Николай Николаевич Бенардос разработал и предложил практический способ использования электрической дуги для сварки металлов. По этому способу сварка производилась электрической дугой, возбуждаемой между угольным электродом и изделием. Несколько позже, в 1888 г., русский инженер-изобретатель Н. Г. Славянов разработал способ сварки при помощи металлического электрода. Этот способ в настоящее время широко применяется в сварочном производстве. Кроме того, Н. Н. Бенардос и Н. Г. Славянов разработали также основные положения и других методов сварки: с несколькими электродами, в защитных газах, контактной сварки. В условиях царской России эти изобретения получили ограниченное практическое применение, поддерживаемое самими изобретателями, а затем были почти забыты. Великая Октябрьская социалистическая революция создала условия для мощного развития науки и техники. Возродилась и получила дальнейшее развитие и сварочная техника. В 1929 г. советский инженер-изобретатель Д. А. Дульчевский разработал способ автоматической дуговой сварки под флюсом. С 1940 г. этот способ был тщательно изучен, развит и внедрен в промышленность и строительство. В этом большая заслуга Института электросварки имени Е. О. Патона Академии наук УССР. Институт разработал теорию автоматической сварки, флюсы и автоматы для сварочных работ.

Большую работу провел институт по широкому внедрению автоматической сварки в народное хозяйство. Эта работа продолжается и в настоящее время; институт имеет тесную связь со многими отраслями народного хозяйства, в которых применяются сварочные работы. Большое участие в дальнейшем развитии теории и технологии сварочных работ принимают Центральный научно-исследовательский институт технологии машиностроения (ЦНИИТмаш), Московское высшее техническое училище имени Н. Э. Баумана, Всесоюзный научно-исследовательский институт электросварочного оборудования (ВНИИЭСО), Всесоюзный научно-исследовательский и конструкторский институт автогенного машиностроения (ВНИИавтогенмаш), Ленинградский политехнический институт имени Калинина, завод «Электрик», Уралмашзавод и ряд других организаций. За годы пятилеток были проведены широкие мероприятия по созданию специализированных производственных организаций, научно-исследовательских институтов и лабораторий по сварке. В период Отечественной войны сварка получила большое применение в военной технике, а в послевоенные годы — при восстановительных работах. В июне 1958 г. ЦК КПСС и Совет Министров СССР приняли специальное решение «О дальнейшем внедрении в производство сварочной техники», в котором отмечается важное место сварки в развитии промышленности и строительства и даются основные направления дальнейшего развития сварки. Июньский (1959 г.) Пленум ЦК КПСС » в своих решениях подчеркнул важное значение сварки для дальнейшего развития промышленности и строительства. Июльский (1960 г.) Пленум ЦК КПСС снова отметил важность развития сварочного производства, заслушал специальный доклад директора Института электросварки Академии наук УССР академика Б. Е. Патона.

4 стр., 1804 слов

Развитие средств связи

... на линии находится 7--10 миллионов человек). 2. Исследовательская часть «Средства связи в нашей жизни» Изучив развитие средств связи мне стало интересно, насколько широко в нашей стране и в ... над полюсом магнита, изменяла его магнитный поток. Вследствие этого поступавший в линию электрический ток изменялся соответственно колебаниям воздуха, вызванным бормотанием Ватсона. Это был момент зарождения ...

Пленум поставил большие задачи перед учеными и инженерами-сварщиками и по совершенствованию и внедрению новой технологии сварки и нового » 1 сварочного оборудования, по разработке электродов и других сварочных материалов. Постановление Совета Министров СССР в октябре I 1970 г. «Об ускорении технического прогресса и дальнейшем повышении 1 производительности труда в сварочном производстве», наметившее м ‘ новые направления по дальнейшему совершенствованию сварочного > производства в девятой пятилетке, позволило значительно повысить; уровень автоматизации и механизации сварочных, заготовительных и сборочно-сварочных работ, совершенствовать технологию и оборудование, достигнуть более высокой производительности и эффективности сварочного производства. Основные направления развития народного хозяйства СССР на о I 1976 … 1980 гг., утвержденные XXV съездом КПСС, предусматривают динамическое и пропорциональное развитие общественного производства, повышение его эффективности, ускорение научно-технического прогресса, рост производительности труда, всемерное улучшение качества работы во всех звеньях народного хозяйства. В области сварочного производства дальнейшая комплексная механизация и автоматизация сварки, применение поточных и конвейерных линий, внедрение прогрессивных технологических процессов и оборудования будут способствовать повышению производительности труда, улучшению и стабилизации качества сварных конструкций, уменьшению расхода электроэнергии и сварочных материалов, улучшению условий труда.

В настоящее время по объему работ и по техническому уровню развития сварочных работ Россия занимает одно из ведущих мест в мире. Сварка заняла важное место в различных отраслях промышленности и строительства благодаря своим преимуществам перед другими способами производства изделий, например, клепкой, литьем, ковкой и др. Важным преимуществом сварки является возможность при производстве изделия выбирать его наиболее рациональную конструкцию и форму. Кроме того, сварка позволяет экономно использовать металлы и значительно уменьшить отходы производства.

10 стр., 4672 слов

Разработка технологического процесса ручной дуговой сварки бака сварного

... Сварной шов №3: Т9 по ГОСТ 5264 - 80 «Тавровый с двумя симметричными скосами одной кромки» Материал изделия: конструкционная легированная Сталь 15Г по ГОСТ 1577-93 бак сварка ... также связывает водород в термически стойкие соединения. низководородными Преимущества основных покрытий делают электроды с этими покрытиями незаменимыми при сварке закаливающихся сталей, склонных к образованию холодных ...

2. ВИДЫ СВАРНЫХ СОЕДИНЕНИЙ

Сварные соединения и швы классифицируются по следующим основным признакам:

  • виду соединения;
  • положению, в котором выполняется сварка;
  • конфигурации и протяженности;
  • применяемому виду сварки;
  • способу удержания расплавленного металла шва;
  • количеству наложения слоев;
  • применяемому для сварки материалу;
  • расположению свариваемых деталей относительно друг друга;
  • действующему на шов усилию;
  • объему наплавленного металла;
  • форме свариваемой конструкции;
  • форме подготовленных кромок под сварку.

По виду соединения сварные швы бывают стыковыми и угловыми.

По расположению в пространстве швы сварных соединений подразделяются на нижние, вертикальные, горизонтальные и потолочные. Выход шва из потолочного положения в вертикальное при сварке цилиндрических изделий называется полупотолочным положением.

По конфигурации швы сварных соединений бывают прямолинейными, кольцевыми, вертикальными и горизонтальными. По протяженности швы разделяются на сплошные и прерывистые. Сплошные швы в свою очередь делятся на короткие, средние и длинные.

По виду сварки швы сварных соединений разделяются на:

а) швы дуговой сварки

б) швы автоматической и полуавтоматической сварки под флюсом

в) швы дуговой сварки в защитных газах

г) швы электрошлаковой сварки

д) швы электрозаклепочные

е) швы контактной электросварки

ж) швы паяных соединений

По способу удержания расплавленного металла швы сварных соединений делятся на швы, выполненные без подкладок и подушек; на съемных и остающихся стальных подкладках: на медных, флюсомедных. керамических и асбестовых подкладках, а также флюсовых и газовых подушках. В зависимости от того, с какой стороны накладывается шов, различают односторонние и двусторонние швы.

По применяемому для сварки материалу швы сварных соединений подразделяются на швы соединения углеродистых и легированных сталей; швы соединения цветных металлов; швы соединения биметалла; швы соединения винипласта и полиэтилена.

По расположению свариваемых деталей относительно друг друга швы сварных соединений могут быть под острым или тупым углом, под прямым углом, а также располагаться в одной плоскости.

По объему наплавленного металла различают нормальные, ослабленные и усиленные швы.

По форме свариваемой конструкции швы сварных соединений выполняются на плоских и сферических конструкциях, а по расположению на изделии швы бывают продольными и поперечными.

Сварными называют неразъемные соединения, выполненные при помощи сварки. Они могут быть стыковыми, угловыми, нахлесточными, тавровыми и торцевыми.

Стыковым называют соединение двух деталей их торцами, расположенными в одной плоскости или на одной поверхности. Толщина свариваемых поверхностей может быть одинаковой или отличаться одна от другой. На практике стыковое соединение чаще всего применяют при сварке трубопроводов и различных резервуаров.

7 стр., 3375 слов

Подготовка металла к сварке

... под флюсом - до 18 мм). Поэтому при сварке металла большой толщины необходимо разделывать кромки. Угол скоса кромки обеспечивает определенную величину угла разделки кромок, что необходимо для доступа дуги в глубь соединения ...

Угловое — сварное соединение двух элементов, расположенных под углом относительно друг друга и сваренных в месте примыкания их краев. Такие сварные соединения нашли широкое применение в строительной практике.

Нахлесточное — сварное соединение предусматривает наложение одного элемента на другой в одной плоскости с частичным перекрытием друг друга. Такие соединения чаще всего встречаются в строительно-монтажных работах, при сооружении ферм, резервуаров и т.д.

Тавровым называют соединение, в котором к плоскости одного элемента приложен торец другого соединения под определенным углом.

Участок сварного соединения, сформированный как результат кристаллизации расплавленного металла, называется сварочным швом. В отличие от соединений сварные швы бывают стыковыми и угловыми.

Стыковой — это сварной шов стыкового соединения.

Угловой — это сварной шов углового, нахлесточного и таврового соединений.

Сварочные швы различают по количеству слоев наложения, ориентации их в пространстве, по длине и т.д. Так, если шов полностью охватывает соединение, то его называют сплошным. Если в пределах одного соединения шов разрывается, то его называют прерывистым. Разновидностью прерывистого шва является прихваточный шов, который применяют для фиксации элементов относительно друг друга перед сваркой. Если сварочные швы накладывают один на другой, то такие швы называют многослойными.

По форме наружной поверхности сварочные швы могут быть плоскими, вогнутыми или выпуклыми. Форма сварочного шва оказывает влияние на его физико-механические свойства и на расход электродного металла, связанный с его формированием. Наиболее экономичны плоские и вогнутые швы, которые, к тому же, лучше работают при динамических нагрузках, так как отсутствует резкий переход от основного металла к сварному шву. Чрезмерный наплыв выпуклых, швов приводит к перерасходу электродного металла, а резкий переход от основного металла к сварному шву при концентрированных напряжениях может вызвать разрушения соединения. Поэтому при изготовлении ответственных конструкций выпуклость на швах снимают механическим способом (фрезы, абразивные круги и т.д.).

Различают сварочные швы по их положению в пространстве. Это нижние, горизонтальные, вертикальные и потолочные швы.

Элементы геометрической формы подготовки кромок под сварку

Элементами геометрической формы подготовки кромок под сварку являются: угол разделки кромок б; зазор между стыкуемыми кромками а; притупление кромок S; длина скоса листа L при наличии разности толщин металла; смещение кромок относительно друг друга д.

Угол разделки кромок выполняется при толщине металла более 3 мм, поскольку ее отсутствие (разделки кромок) может привести к непровару по сечению сварного соединения, а также к перегреву и пережогу металла; при отсутствии разделки кромок для обеспечения провара электросварщик всегда старается увеличить величину сварочного тока.

Разделка кромок позволяет вести сварку отдельными слоями небольшого сечения, что улучшает структуру сварного соединения и уменьшает возникновение сварочных напряжений и деформаций.

11 стр., 5402 слов

Сварные соединения и сварные швы

... кромки в месте соединения расплавляются, самопроизвольно сливаются, образуя общую сварочную ванну, в которой происходят некоторые физические и химические процессы. Сварка давлением осуществляется пластическим деформированием металла в месте соединения ... соединения и разъединения стали. Дуга Н.Н. Бенардоса горела между угольным электродом и свариваемым металлом. Присадочным прутком для образования шва ...

Зазор, правильно установленный перед сваркой, позволяет обеспечить полный провар по сечению соединения при наложении первого (корневого) слоя шва, если подобран соответствующий режим сварки.

Длиной скоса листа регулируется плавный переход от толстой свариваемой детали к более тонкой, устраняются концентраторы напряжений в сварных конструкциях.

Притупление кромок выполняется для обеспечения устойчивого ведения процесса сварки при выполнении корневого слоя шва. Отсутствие притупления способствует образованию прожогов при сварке.

Смещение кромок ухудшает прочностные свойства сварного соединения и способствует образованию непровара и концентраций напряжений. ГОСТ 5264—69 допускает смещение свариваемых кромок относительно друг друга до 10% толщины металла, но не более 3 мм.

Элементами геометрической формы сварного шва являются: при стыковых соединениях — ширина шва «b», высота шва «h», при тавровых, угловых и нахлесточных соединениях— ширина шва «b», высота шва «h» и катет шва «К».

Сварные швы классифицируются по количеству наплавленных валиков —однослойные и многослойные; по расположению в пространстве — нижние, горизонтальные, вертикальные и потолочные; по отношению к действующим усилиям на швы —фланговые, лобовые (торцовые); по направлению — прямолинейные, круговые, вертикальные и горизонтальные.

На качественные показатели сварных соединений накладывает отпечаток множество факторов, к которым относятся свариваемость металлов, их чувствительность к термическим воздействиям, окисляемость и т.д. Поэтому для соответствия сварных соединений тем или иным эксплуатационным условиям следует эти критерии учитывать.

Свариваемость металлов определяет способность отдельных металлов или их сплавов образовывать при соответствующей технологической обработке соединения, отвечающие заданным параметрам. На этот показатель оказывают влияние физические и химические свойства металлов, строение их кристаллической решетки, наличие примесей, степень легирования и т.д. Свариваемость может быть физическая и технологическая.

Под физической свариваемостью понимают свойство материала или его составов создавать монолитное соединение с устойчивой химической связью. Физической свариваемостью обладают практически все чистые металлы, их технические сплавы и ряд сочетаний металлов с неметаллами.

К технологической свариваемости материала относят его реакцию на сварочный процесс и способность создать соединение, удовлетворяющее заданные параметры.

3. СТРОЕНИЕ СВАРНОГО ШВА

Наиболее широкое применение в сварных конструкциях имеет малоуглеродистая сталь. Рассмотрим поэтому вопрос о строении сварного шва на примере сварки малоуглеродистой стали. Основой стали является железо, в котором размещены частицы углерода и других элементов, входящих в ее состав. Железо может находиться в стали в виде феррита и аустенита.

Ферритом называется чистое железо, очень мягкое, обладающее высокой пластичностью, прочностью и магнитными свойствами. В виде феррита железо может находиться при температуре до 910°. Атомы кристалла феррита расположены по схеме, показанной на рис. 25, а. При температуре 910° (называемой критической ) и выше феррит переходит в а у с т е н и т , характеризуемый более уплотненным расположением атомов (рис. 25, б).

13 стр., 6391 слов

Разработка технологического процесса сборки и сварки печи-каменки банной

... моей письменной экзаменационной работы: « Разработка технологического процесса сборки и сварки печь каменка банная». Данная конструкция изготавливается из листового металла. Она представляет собой ... «Печи каменки» Данная печь-каменка предназначена для установки в помещение бани в целях создания необходимого температурно-влажностного режима, для обогрева бани, парильного помещения. Банная печь ...

Аустенит не магнитен и отличается большей твердостью и вязкостью.

При охлаждении ниже 910° аустенит способен снова превращаться в феррит. Углерод содержится в стали в виде химического соединения с железом — цементита (Fe3C), отличающегося высокой твердостью и хрупкостью. Цементит в мягкой малоуглеродистой стали располагается в виде очень тонких пластинок, скопления которых распределены в основной массе феррита.

Такое строение (структура) стали называется перлитом, представляющим собой механическую смесь феррита с цементитом. По мере увеличения содержания углерода в стали количество перлита в ней возрастает. Сталь, содержащая 0,83% углерода, состоит только из перлита. При дальнейшем повышении содержания углерода начинается выделение отдельных зерен цементита и структура стали будет состоять из перлита с распределенным в нем цементитом.

Углерод понижает критическую температуру. Как указывалось выше, для чистого железа она равна 910°, для стали, содержащей 0,9 /о углерода, она составляет всего 720°. Аустенит способен хорошо растворять углерод, вследствие чего при нагревании стали до температуры, незначительно (на 20—30°) превышающей критическую, включения цементита исчезают и сталь приобретает равномерную мелкозернистую структуру. Если затем сталь медленно охладить, то она сохранит мелкозернистое строение. Это свойствостали используется для придания ей мелкозернистой структуры отжигом.

Если нагревать сталь до температуры, значительно превышающей критическую, то получается крупнозернистая структура, которая понижает прочность стали и делает ее более хрупкой. Повторно нагревая перегретую сталь до температуры несколько выше критической и затем медленно охлаждая ее, можно вновь получить мелкозернистую структуру.

Описанные выше превращения происходят в стали не мгновенно, а требуют некоторого времени. Поэтому при быстром охлаждении стали, которое имеет место при сварке, эти превращения не успевают произойти полностью, вследствие чего получаются другие, промежуточные структуры. Так, например, в стали с повышенным содержанием углерода растворенный в аустените углерод при быстром охлаждении не всегда успевает полностью выделиться и остается в феррите. При этом образуется новая, твердая структура — мартенсит.

Мартенситная сталь отличается высокой твердостью, но она более хрупкая. Нагрев и последующее быстрое охлаждение (закалка) придают стали повышенную твердость. Чем больше углерода в стали, тем она более склонна к закалке при нагреве и быстром охлаждении. Изменяя скорость охлаждения, можно получить различную твердость стали. Закалке подвержены стали, содержащие» свыше 0,3% углерода. Последующий нагрев и медленное охлаждение (отпуск) устраняют действие закалки на сталь, способствуя частичному или полному выделению углерода из феррита и образованию перлитной структуры. Степень отпуска (т. е. степень уменьшения твердости) может быть различной в зависимости от температуры нагрева и длительности выдержки стали при этой температуре.

Это явление, имеет место, например, при наложении многослойных швов. В процессе наложения вышележащих валиков отжигается металл нижележащих слоев шва.

На тщательно отшлифованной поверхности разреза сварного шва, протравленной специальным раствором, можно ясно видеть отдельные его части, имеющие различное строение зерен и называемые зонами сварного шва.

4 стр., 1714 слов

Подготовка металла под сварку

... и улучшение условий труда рабочих. Подготовка металла под сварку. Если металл, идущий на изготовление сварных конструкций, загрязнен ... при изготовлении различных конструкций, машин и изделий. В настоящее время сваривают материалы толщиной от ... стали применяться: сварка ультразвуком, электронно-лучевая, плазменная, диффузионная, колодная сварка, сварка трением и т.д. Большой вклад в развитие сварки ...

Основной металл в процессе сварки нагревается и частично расплавляется, подвергаясь действию высокой температуры сварочной дуги или сварочного пламени. Чем выше температура нагрева, тем большие изменения будет претерпевать металл. В той зоне основного металла, где температура нагрева углеродистой стали не превышает 720°, металл сохраняет те же свойства, которыми он обладал до сварки.

Наплавленный металл получается за счет расплавления присадочного, или электродного металла и частичного смешивания его с основным металлом. При ручной дуговой сварке стали в наплавленный металл за счет расплавления свариваемых кромок добавляется до 10% основного металла; при сварке под флюсом проволокой диаметром 4—5 мм эта добавка основного металла составляет до 50% и более.

Наплавленный металл по составу, строению и свойствам отличается как от присадочного (электродного), так и от основного металла. Образование первых кристаллов начинается в жидком металле у поверхностей охлаждения и вокруг так называемых центров кристаллизации, образующихся в процессе затвердевания сварочной ванны. Из этих начальных центров образуются зерна металла за счет присоединения новых кристаллов. Чем быстрее охлаждение металла, тем больше образуется центров кристаллизации и тем мельче будут зерна. При медленном охлаждении в процессе затвердевания металл приобретает крупнозернистое строение.

Находящиеся в жидком металле примеси и загрязнения (окислы, шлаки и др.) имеют более низкую температуру затвердевания, чем металл, и при застывании располагаются по границам зерен металла, ухудшая их сцепление между собой. Это снижает прочность и пластичность наплавленного металла.

Чем чище наплавленный металл, тем выше его механические свойства. При автоматической сварке под флюсом получается более глубокое проплавление кромок основного металла, чем при ручной сварке, и он имеет зерна разветвленной формы, напоминающие ветвь дерева. Зерна такой формы называются дендритами (от греческого слова дендрон — дерево) или столбчатыми и характерны для образовавшегося при застывании жидкого литого металла.

Таким образом, зерна наплавленного металла по своей форме и расположению будут иными, чем зерна основного металла, которые всегда вытянуты в направлении прокатки. Если жидкий наплавленный металл или соседний с ним участок основного металла был очень сильно перегрет, то при охлаждении его зерна принимают игольчатую форму и пересекаются друг с другом в разных направлениях. Перегретый металл обладает меньшей прочностью и является более хрупким.

Зона сплавления расположена между основным и наплавленным металлом. В этой зоне основной металл расплавляется и смешивается с наплавляемым металлом электрода. Если зерна основного и наплавленного металла хорошо срослись и как бы проникают друг в друга, то такие швы обладают наибольшей прочно. Зона сплавления имеет ничтожные размеры и даже при рассмотрении под микроскопом часто сливается с границей шва. Однако это бывает не всегда. В некоторых случаях можно довольно ясно различить границу между зернами основного и наплавленного металла. Иногда на границе между основным и наплавленным металлом образуется цепочка из пленок окислов. В таком месте шов всегда будет обладать пониженной прочностью из-за недостаточного сцепления частиц наплавленного металла с основным. За зоной сплавления в основном металле имеется участок, где металл не изменяет своего химического состава. Но так как он довольно сильно нагревается, то строение и размеры его зерен изменяются. Эта часть основного металла носит название зона термического (теплового) влияния или просто хоны влияния.

10 стр., 4715 слов

Тяжелые металлы и их влияние на растения

... проявляется в эндемических заболеваниях растений и животных—биогеохимических эндемиях. Влияние основных тяжелых металлов на растения Кобальт В биосфере ... заключается в придании таким соединениям, в основном ферментам, специфичности действия. При взаимодействии микроэлементов ... биологической ролью, получили название биогенных элементов. К числу биоэлементов относятся: азот, водород, железо, ...

Зона влияния имеет особое значение при сварке тех сортов сталей, которые чувствительны к закалке (высокоуглеродистых, хромистых).

При нагреве и последующем быстром охлаждении таких сталей в зоне влияния резко повышается твердость и хрупкость, часто сопровождающиеся даже появлением трещин в металле шва и прилегающей к нему зоне основного металла. Для таких сталей приходится применять специальные режимы сварки, а также предварительный подогрев и последующую термическую обработку сварных швов.

Рядом с наплавленным металлом расположена зона сплавления, с которой граничит участок перегрева. Здесь основной металл уже не нагревается до температуры плавления, хотя температура нагрева его достаточно высока и лежит в пределах 1100—1500°, что вызывает значительный рост зерен металла на данном участке, и почти всегда сопровождается образованием зерен игольчатой (видманштеттовой) структуры.

Эта часть шва обычно является наиболее слабым местом и здесь металл будет обладать наибольшей хрупкостью, хотя и не будет влиять существенно на прочность сварного соединения в целом, за исключением тех случаев, когда перегрев значителен. По мере удаления от оси шва температура нагрева снижается. В пределах температур 900—1100° находится участок нормализации, характеризующийся наиболее мелкозернистым строением, так как здесь температура нагрева лишь незначительно превышает критическую температуру. Следующий участок, лежащий в пределах температур 720—900°, подвержен лишь частичному изменению структуры основного металла и потому называется участком неполной кристаллизации

В нем имеются наряду с отдельными довольно крупными зернами скопления мелких зерен. В этой части металла подведенного количества тепла уже недостаточно для измельчения всех зерен. Участок, соответствующий нагреву от 500 до 720°, называется участком рекристаллизации ; в нем структура стали не изменяется, а происходит лишь восстановление прежней формы и размеров зерен, разрушенных и деформированных при прокатке металла. При дальнейшем понижении температуры от 500° и ниже уже нельзя заметить признаков теплового воздействия на основной металл.

Наибольшей прочностью и пластичностью металл сварного соединения будет обладать на участке нормализации. Наименьшую величину зона термического влияния имеет при дуговой сварке тонкопокрытыми электродами и при сварке под слоем флюса. При ручной дуговой сварке электродами с толстым покрытием зона влияния несколько больше и достигает 5—6 мм. Ширина зоны влияния главным образом зависит от сварочного тока, скорости сварки и условий отвода тепла от места сварки. Так, например, при автоматической сварке стали со скоростью 10 —12 м/час током 2000—2500 а ширина зоны влияния достигает 8—10 мм при толщине стали 40 мм; при автоматической сварке стали толщиной 2 мм током 1200—1400 а при скорости 360 м/час зона влияния имеет ширину всего 0,5—0,7 мм.

6 стр., 2648 слов

Сварка и резка металлов как технологический процесс

... другу. 2. Классификация и обозначение сварных швов Сварной шов — это участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла или в результате пластической деформации при сварке давлением или сочетания кристаллизации и ...

сварное соединение шов сталь

ЛИТЕРАТУРА

[Электронный ресурс]//URL: https://drprom.ru/referat/po-injenernoy-grafike-na-temu-svarka/

1. ГОСТ 2601-84 «Сварка металлов. Термины и определения основных понятий».

2. «Дуговая и газовая сварка» /В.М. Рыбаков/

3. «Сварочные работы в строительстве и основы технологии металлов». / М.-1994/

4. «Технология металлов и сварка» /под ред. П.И. Полухина/1997/

ПРИЛОЖЕНИЕ

Стыковое сварное соединение. Сверху — без раздела кромок, снизу — с симметричной V-образной разделкой кромок под сварку.

Двустороннее нахлёсточное сварное соединение.

Тавровое сварное соединение с симметричной разделкой кромок под сварку.

Угловое сварное соединение с односторонней разделкой кромок под сварку.

Торцовое сварное соединение.