Свойства и законы идеального газа

Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур или давлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами.

Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми — Дирака или Бозе — Эйнштейна).

Газовые законы — законы термодинамических процессов, протекающих в системе с неизменным количеством вещества при постоянном значении одного из параметров: закон Шарля, закон Гей-Люссака, закон Бойля-Мариотта, а также закон Авогадро, закон Дальтона.

Закон Бойля-Мариотта. Изотерма

ЗАКОН БОЙЛЯ — МАРИОТТА, один из основных газовых законов, который описывает изотермические процессы в идеальных газах. Его установили учёные Р. Бойль в 1662 г. и Э. Мариотт в 1676 г. независимо друг от друга при экспериментальном изучении зависимости давления газа от его объема при постоянной температуре.

при постоянной температуре Т

pV = const =

Постоянная С пропорциональна массе газа (числу молей) и его абсолютной температуре. Другими словами: произведение объема данной массы идеального газа на его давление постоянно при постоянной температуре. Закон Бойля — Мариотта выполняется строго для идеального газа. Для реальных газов закон Бойля — Мариотта выполняется приближенно. Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких температурах.

Закон Бойля — Мариотта следует из кинетической теории газов, когда принимается допущение, что размеры молекул пренебрежимо малы по сравнению с расстоянием между ними и отсутствует межмолекулярное взаимодействие. При больших давлениях необходимо вводить поправки на силы притяжения между молекулами и на объем самих молекул. Как и уравнение Клайперона, закон Бойля — Мариотта описывает предельный случай поведения реального газа, более точно описываемый уравнением Ван-дер-Ваальса. Применение закона приближенно можно наблюдать в процессе сжатия воздуха компрессором или в результате расширения газа под поршнем насоса при откачке его из сосуда.

13 стр., 6214 слов

Универсальная газовая постоянная. Основные законы идеального газа (2)

Независимость параметров состояния позволяет реализовываться всем законам идеального газа: Закон Бойля-Мариотта рV = const Т.е. при постоянной температуре для массы m идеального газа произведение объема газа на его давление есть постоянная величина . Это изотермический процесс. ...

Термодинамический процесс, котроый происходит при постоянной температуре называется изотермическим. Изображение его на графике называется изотермой.(см. график изотермического процесса)

Закон Гей-Люссака. Изобара

Французский ученый Ж. Гей-Люссак в 1802 году нашел экспериментально зависимость объема газа от температуры при постоянном давлении. Данные лежат в основе газового закона Гей-Люссака.

Формулировка закона Гей-Люссака следующая: для данной массы газа отношение объема газа к его температуре постоянно, если давление газа не меняется. Эту зависимость математически записывают так:

V/ Т =const, если P=const и m=const

Применение:

Данный закон приближенно можно наблюдать, когда происходит расширение газа при его нагревании в цилиндре с подвижным поршнем. Постоянство давления в цилиндре обеспечивается атмосферным давлением на внешнюю поверхность поршня. Другим проявлением закона Гей-Люссака в действии является аэростат. Закон Гей-Люссака не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

Закон справедлив для идеального газа. Он неплохо выполняется для разреженных газов, которые по своим свойствам близки к идеальному. Температура газа должна быть достаточно велика.

Графически эта зависимость в координатах V-T изображается в виде прямой, выходящей из точки Т=0 . Эту прямую называют изобарой . Разным давлениям соответствуют разные изобары. Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным . От греческого слова «барос» — вес (тяжесть).

(см. график изобарного процесса).

Закон Шарля. Изохора

Французский ученый Ж. Шарль в 1787 году нашел экспериментально зависимость давления газа от температуры при постоянном объеме. Данные лежат в основе газового закона Шарля.

Формулировка закона Шарля следующая: для данной массы газа отношение давления газа к его температуре постоянно, если объем газа не меняется. Эту зависимость математически записывают так:

P /Т= const , если V = const и m = const

Применение:

Данный закон приближенно можно наблюдать, когда происходит увеличение давления газа в любой емкости или в электрической лампочке при нагревании. Изохорный процесс используется в газовых термометрах постоянного объема. Закон Шарля не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

Закон справедлив для идеального газа. Он неплохо выполняется для разреженных газов, которые по своим свойствам близки к идеальному. Температура газа должна быть достаточно высокой. Процесс должен проходить очень медленно

Графически эта зависимость в координатах P-T изображается в виде прямой, выходящей из точки Т=0 . Эту прямую называют изохорой . Разным объемам соответствуют разные изохоры. Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным . От греческого слова «хорема»-вместимость. (см. графики изохорного процесса

Уравнение состояния идеального газа

Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона ) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

5 стр., 2429 слов

Законы идеальных газов

... закону Ньютона ввести равные молекулы пристеночного слоя. Пусть P- средняя сила давления газа на стенку, а средняя сила, с которой молекулы пристеночного слоя втягиваются внутрь газа. Тогда идеальный газ уравнение ... , или (3) Видно, что давление на стенку P не зависит от материала стенки. Роль ...

где

p — давление,

V м — молярный объём,

T — абсолютная температура,

R — универсальная газовая постоянная.

Так как , где где н — количество вещества, а , где m — масса, м — молярная масса, уравнение состояния можно записать:

идеальный газ аэрогазодинамика шарль

уравнения (закона) Менделеева — Клапейрона

Уравнение можно записать в виде:

объединённым газовым законом

  • закон Бойля — Мариотта.
  • закон Гей-Люссака.
  • закон Шарля

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением

Газы нередко бывают реагентами и продуктами в химических реакциях. Не всегда удается заставить их реагировать между собой при нормальных условиях. Поэтому нужно научиться определять число молей газов в условиях, отличных от нормальных.

уравнение состояния идеального газа

PV = n RT

где n — число молей газа;

P — давление газа (например, в атм ;

  • V — объем газа (в литрах);
  • T — температура газа (в кельвинах);

R — газовая постоянная (0,0821 л

  • атм /моль·K).

Например, в колбе объемом 2,6 л находится кислород при давлении 2,3 атм и температуре 26 о С. Вопрос: сколько молей O2 содержится в колбе?

Из газового закона найдем искомое число молей n :

Не следует забывать преобразовывать температуру из градусов Цельсия в кельвины: (273 о С + 26 о С) = 299 K. Вообще говоря, чтобы не ошибиться в подобных вычислениях, нужно внимательно следить за размерностью величин, подставляемых в уравнение Клапейрона-Менделеева. Если давление дается в мм ртутного столба, то нужно перевести его в атмосферы, исходя из соотношения: 1 атм = 760 мм рт. ст. Давление, заданное в паскалях (Па), также можно перевести в атмосферы, исходя из того, что 101325 Па = 1 атм .

** Можно проводить вычисления и в системе СИ, где объем измеряется в м 3 , а давление — в Па. Тогда используется значение газовой постоянной для системы СИ: R = 8,314 Дж/K·моль. В этом параграфе мы будем использовать объем в литрах и давление в атм.

Решим такую задачу: некоторое количество газа гелия при 78 о С и давлении 45,6 атм занимает объем 16,5 л. Каков объем этого газа при нормальных условиях? Сколько это молей гелия? Можно, конечно, просто подставить данные нам значения в уравнение Клапейрона-Менделеева и сразу вычислить число молей n . Но что делать, если на экзамене вы забыли точное значение газовой постоянной R?

Газовую постоянную не нужно запоминать — ее можно легко вычислить в любой момент. Действительно, 1 моль газа при нормальных условиях (1 атм и 273 К) занимает объем 22,4 л. Тогда:

Другой способ заключается в том, чтобы заставить газовую постоянную R сократиться. Снова вспомним, что нормальные условия — это давление 1 атм и температура 0 о С (273 K).

16 стр., 7616 слов

Технология переработки нефти и газа

... природного газа. В контрольной работе более подробно рассматриваются вопросы, касающиеся природного газа и газовых конденсатов, а именно: назначение и характеристика процессов переработки, нефти, нефтепродукта, газа, ... углерода, а также гелий. В составе природных и нефтяных газов и газового конденсата ... давлении и температуре 20 °С) ведет себя как реальный газ. Этан находится на границе состояния газ ...

Запишем все, что нам известно про исходные (в задаче) и конечные (при н.у.) значения P, V и T для нашего газа:

Исходные значения: P 1 = 45,6 атм, V1 = 16,5 л, T1 = 351 K;

Конечные значения: P 2 = 1 атм, V2 = ? T2 = 273 K.

Очевидно, что уравнение Клапейрона-Менделеева одинаково справедливо как для начального состояния газа, так и для конечного:

P 1 V1 = n RT1

P 2 V2 = n RT2

Если теперь почленно разделить верхнее уравнение на нижнее, то при неизменном числе молей n мы получаем:

После подстановки всех известных нам значений получим объем газа при н.у.

V 2 = 45,6·16,5·273 / 351 = 585 л

Итак, объем гелия при н.у. составит 585 л. Поделив это число на молярный объем газа при н.у. (22,4 л/моль) найдем число молей гелия: 585/22,4 = 26,1 моль.

Некоторых из вас, возможно, интересует вопрос, каким образом удалось определить постоянную Авогадро N A = 6,02·1023 ? Действительно, ранее мы получили близкое значение 6·1023 исходя из массы протона и нейтрона 1,67·1024 г. Но в 1811 году, когда Амедео Авогадро высказал свою гипотезу, ничего не было известно не только о массе протона или нейтрона, но и о самом существовании этих частиц!

Значение числа Авогадро было экспериментально установлено только в конце XIX — начале XX века. Опишем один из таких экспериментов.

В откачанный до глубокого вакуума сосуд объемом V = 30 мл поместили навеску элемента радия массой 0,5 г и выдержали там в течение одного года. Было известно, что за секунду 1 г радия испускает 3,7·10 10 альфа-частиц. Эти частицы представляют собой ядра гелия, которые тут же принимают электроны из стенок сосуда и превращаются в атомы гелия. За год давление в сосуде выросло до 7,95·10-4 атм (при температуре 27 о С).

Изменением массы радия за год можно пренебречь. Итак, чему равна NA ?

Сначала найдем, сколько альфа-частиц (то есть атомов гелия) образовалось за один год. Обозначим это число как N атомов:

N = 3,7·10 10

  • 0,5 г
  • 60 сек
  • 60 мин
  • 24 час
  • 365 дней = 5,83·1017 атомов.

Запишем уравнение Клапейрона-Менделеева PV = n RT и заметим, что число молей гелия n = N/NA . Отсюда:

В начале XX века этот способ определения постоянной Авогадро был самым точным. Но почему так долго (в течение года) длился эксперимент? Дело в том, что радий добывается очень трудно. При его малом количестве (0,5 г) радиоактивный распад этого элемента дает очень мало гелия. А чем меньше газа в замкнутом сосуде, тем меньшее он создаст давление и тем большей будет ошибка измерения. Понятно, что ощутимое количество гелия может образоваться из радия только за достаточно долгое время.

3 стр., 1325 слов

Паровая конверсия природного газа

... для паровой конверсии метана, однако, имеется возможность построения подобных номограмм и для других способов конверсии. Конверсия метана, являющегося основным компонентом природного газа, ... запасы природного газа превосходят аналогичные запасы нефти. Кроме того, природный газ можно отнести к возобновляемым источникам энергии и сырья. Значительные количества основных компонентов природного газа - ...

Свободная энергия идеального газа

Рассмотрим термодинамическую систему, совершающую адиабатическое расширение. В таком процессе работа совершается за счет убыли внутренней энергии . Можно сказать, что внутренняя энергия характеризует способность системы совершать работу при адиабатическом расширении.

Иначе обстоят дела в случае изотермического расширения. В таком процессе . Внутреннюю энергию использовать для характеристики способности системы совершать работу нельзя, т.к. . Это побуждает нас отличать общую энергию, которой обладает система тел или тело, от той ее части, которую при данных условиях можно использовать для получения работы. Нужно найти другую функцию, которая характеризует работу и является функцией состояния.

Та часть энергии системы, которая при данных условиях может быть использована для преобразования в механическую работу, называется свободная энергия . В обратимых изотермических процессах свободная энергия характеризует способность системы совершать работу. Работа в таких процессах совершается за счет убыли свободной энергии .

При изотермическом расширении, когда работа положительна, то свободная энергия убывает, и наоборот при сжатии работа отрицательна, а свободная энергия возрастает, за счет внешних сил, сжимающих тело. Система не может совершить работу, превышающую ее свободную энергию.

В механике энергия тела равна сумме потенциальной и кинетической энергий. Оба этих вида энергий макроскопических тел могут быть полностью преобразованы в механическую работу. Внутренняя энергия молекулярной системы, в интересующем нас случае, не может быть целиком превращена в работу. Посмотрим, чем отличаются и . При изотермическом расширении идеального газа от объема до объема работа одного моля . Правая часть представляет собой убыль свободной энергии , и она тем больше, чем больше отношение объемов, т.е. чем сильнее сжат газ. А, напомним, внутренняя энергия идеального газа не зависит от объема.

В изотермическом процессе сжатый газ совершает работу за счет подводимого тепла, но мы говорим о свободной энергии газа, т.к. работу совершает газ.

В общем случае, когда процесс протекает необратимо, совершаемая работа меньше чем в обратимом процессе, т.е. меньше чем изменение свободной энергии. Ю .

Возможны так же случаи, когда изменение свободной энергии не сопровождается совершением работы, например, расширение газа в пустоту. Работ не совершается, внутренняя энергия не изменяется, а способность совершать работу падает. Это так, потому что процесс расширения газа в пустоту необратим полностью, хотя и изотермический.

Свободная энергия , так же как и внутренняя энергия является функцией состояния системы. А это вытекает из того, что при обратимом изотермическом процессе, при переходе из состояния 1 в состояние 2 и обратно в 1, работа , следовательно, в таком переходе работа не зависит от пути, а только от начального и конечного состояния системы.

Список источников

[Электронный ресурс]//URL: https://drprom.ru/referat/osnovnyie-zakonyi-idealnyih-gazov/

1. Вукалович М.П., Новиков И.И. — Термодинамика. М: Машиностроение, 1972

2. Грабовский Р.И. Курс физики. М: Высшая школа, 1974

3. Громов С. В., Физика: Оптика. Тепловые явления. Строение и свойства вещества: Учебник для 10 класса., Москва, «Просвещение», 2003 г.

25 стр., 12461 слов

Тема работы Разработка системы автоматизированного управления ...

... приложений. Объектом исследования является блок подготовки газа (сепаратор факельной системы) установки комплексной подготовки газа. Цель работы разработка автоматизированной системы управления блока сепарации УКПН с использованием ПЛК, на основе ... ная степень, звание Подпись Дата ИКСУ Лиепиньш А. В. к.т.н. 5 6 РЕФЕРАТ ВКР содержит 103 страниц машинописного текста, 22 таблицы, 20 рисунков, список ...

4. Коротков П.Ф. Молекулярная физика и термодинамика — 2e изд., MФТИ, 2004

5. Мякишев Г. Я., Буховцев Б. Б., Сотский Н. Н., Физика, учебник для 10 класса общеобразовательных учреждений, Москва, «Просвещение», 2008г.

6. Якунин В. И., Учебное пособие для изучающих физику в средней школе., Тамбов, ТИПКРО, Тамбовский областной физико-математический лицей, 1994